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Abstract

In the framework of the theory of open systems based on completely positive quantum dynamical
semigroups, we give a description of the continuous-variable quantum entanglement and quantum
discord for a system consisting of two non-interacting modes embedded in a thermal environment.
Entanglement and discord are used to quantify the quantum correlations of the system. For all
values of the temperature of the thermal reservoir, an initial separable Gaussian state remains sep-
arable for all times. The time evolution of logarithmic negativity, which characterizes the degree of
entanglement, indicates that in the case of an entangled initial Gaussian state, entanglement sup-
pression (entanglement sudden death) takes place, for non-zero temperatures of the environment.
Only for a zero temperature of the thermal bath the initial entangled state remains entangled for
finite times. Analysis of the time evolution of the Gaussian quantum discord, which is a measure
of all quantum correlations in the bipartite state, including entanglement, shows that quantum
discord decays asymptotically in time under the effect of the thermal bath. This is contrast with
the sudden death of entanglement. Before the suppression of the entanglement, the qualitative
evolution of quantum discord is very similar to that of the entanglement.

PACS numbers: 03.65.Yz, 03.67.Bg, 03.67.Mn

1 Introduction

The study of quantum correlations is a key issue in quantum information theory [1] and quantum
entanglement represents the indispensable physical resource for the description and performance of
quantum information processing tasks [2]. However, entanglement does not describe all the non-
classical properties of quantum correlations. Zurek [3, 4] defined the quantum discord as a measure
of quantum correlations which includes entanglement of bipartite systems and it can also exist in
separable states.

In recent years there is an increasing interest in using non-classical entangled states of continuous
variable systems in applications of quantum information processing, communication and computation
[5]. A full characterization of the non-classical properties of such states exists, at present, only for the
class of Gaussian states. In this special case there exist necessary and sufficient criteria of entanglement
[6, 7] and quantitative entanglement measures [8, 9].

Quantum coherence and entanglement of quantum systems are inevitably influenced during their
interaction with the external environment. In order to describe realistically quantum information
processes it is necessary to take decoherence and dissipation into consideration.

In this work we describe, in the framework of the theory of open systems based on completely
positive quantum dynamical semigroups, the dynamics of the continuous variable quantum entangle-
ment and quantum discord of a subsystem consisting of two uncoupled modes (harmonic oscillators)
interacting with a common thermal environment. We are interested in discussing the correlation effect
of the environment, therefore we assume that the two modes are independent, i.e. they do not interact
directly. The initial state of the subsystem is taken of Gaussian form and the evolution under the
quantum dynamical semigroup assures the preservation in time of the Gaussian form of the state.

The paper is organized as follows. In Sec. 2 we write the Markovian master equation in the
Heisenberg representation for two uncoupled harmonic oscillators interacting with a general environ-
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ment and give the general solution of the evolution equation for the covariance matrix, i.e. we derive
the variances and covariances of coordinates and momenta corresponding to a generic two-mode Gaus-
sian state. By using the Peres-Simon necessary and sufficient condition for separability of two-mode
Gaussian states [6, 10], we investigate in Sec. 3 the dynamics of entanglement for the considered
subsystem. For all values of the temperature of the thermal reservoir, an initial separable Gaussian
state remains separable for all times. We analyze the time evolution of the logarithmic negativity,
which characterizes the degree of entanglement of the quantum state, and show that in the case of an
entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place,
for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the
initial entangled state remains entangled for all finite times, but in the limit of infinite time it evolves
asymptotically to an equilibrium state which is always separable. We analyze the time evolution
of the Gaussian quantum discord, which is a measure of all quantum correlations in the bipartite
state, including entanglement, and show that quantum discord decays asymptotically in time under
the effect of the thermal bath. This is contrast with the sudden death of entanglement. Before the
suppression of the entanglement, the qualitative evolution of quantum discord is very similar to that
of the entanglement. A summary is given in Sec. 4.

2 Equations of motion

We study the dynamics of the subsystem composed of two non-interacting modes in weak interaction
with a thermal environment. In the axiomatic formalism based on completely positive quantum
dynamical semigroups, the irreversible time evolution of an open system is described in the Heisenberg
representation by the following quantum Markovian Kossakowski-Lindblad master equation for an
operator A († denotes Hermitian conjugation) [11, 12]:

dA

dt
=

i

h̄
[H,A] +

1
h̄

∑

j

(V †
j [A, Vj ] + [V †

j , A]Vj). (1)

Here, H denotes the Hamiltonian of the open system and the operators Vj , V
†
j , defined on the Hilbert

space of H, represent the interaction of the open system with the environment.
We are interested in the set of Gaussian states, therefore we introduce such quantum dynamical

semigroups that preserve this set during time evolution of the system and in this case our model
represents a Gaussian noise channel. Consequently H is taken a polynomial of second degree in the
coordinates x, y and momenta px, py of the two quantum oscillators and Vj , V

†
j are taken polynomials

of first degree in these canonical observables. Then in the linear space spanned by the coordinates
and momenta there exist only four linearly independent operators Vj=1,2,3,4 [13]:

Vj = axjpx + ayjpy + bxjx + byjy, (2)

where axj , ayj , bxj , byj are complex coefficients. The Hamiltonian of the two uncoupled non-resonant
harmonic oscillators of identical mass m and frequencies ω1 and ω2 is

H =
1

2m
(p2

x + p2
y) +

m

2
(ω2

1x
2 + ω2

2y
2). (3)

The fact that the evolution is given by a dynamical semigroup implies the positivity of the ma-
trix formed by the scalar products of the four vectors ax,bx,ay,by, whose entries are the compo-
nents axj , bxj , ayj , byj , respectively. We take this matrix of the following form, where all coefficients
Dxx, Dxpx ,... and λ are real quantities (we put from now on h̄ = 1):




Dxx −Dxpx − iλ/2 Dxy −Dxpy

−Dxpx + iλ/2 Dpxpx −Dypx Dpxpy

Dxy −Dypx Dyy −Dypy − iλ/2
−Dxpy Dpxpy −Dypy + iλ/2 Dpypy


 . (4)
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We introduce the following 4× 4 bimodal covariance matrix:

σ(t) =




σxx(t) σxpx(t) σxy(t) σxpy(t)
σxpx(t) σpxpx(t) σypx(t) σpxpy(t)
σxy(t) σypx(t) σyy(t) σypy(t)
σxpy(t) σpxpy(t) σypy(t) σpypy(t)


 . (5)

From Eq. (1) we obtain the following system of equations for the quantum correlations of the
canonical observables (T denotes the transposed matrix) [13]:

dσ(t)
dt

= Y σ(t) + σ(t)Y T + 2D, (6)

where

Y =




−λ 1/m 0 0
−mω2

1 −λ 0 0
0 0 −λ 1/m
0 0 −mω2

2 −λ


 , (7)

D =




Dxx Dxpx Dxy Dxpy

Dxpx Dpxpx Dypx Dpxpy

Dxy Dypx Dyy Dypy

Dxpy Dpxpy Dypy Dpypy


 . (8)

The time-dependent solution of Eq. (6) is given by [13]

σ(t) = M(t)[σ(0)− σ(∞)]MT(t) + σ(∞), (9)

where the matrix M(t) = exp(Y t) has to fulfill the condition limt→∞M(t) = 0. In order that this
limit exists, Y must only have eigenvalues with negative real parts. The values at infinity are obtained
from the equation

Y σ(∞) + σ(∞)Y T = −2D. (10)

3 Dynamics of entanglement and discord

3.1 Time evolution of entanglement and logarithmic negativity

A well-known sufficient condition for inseparability is the so-called Peres-Horodecki criterion [10, 14],
which is based on the observation that the non-completely positive nature of the partial transposition
operation of the density matrix for a bipartite system (transposition with respect to degrees of freedom
of one subsystem only) may turn an inseparable state into a non-physical state. The signature of this
non-physicality, and thus of quantum entanglement, is the appearance of a negative eigenvalue in the
eigenspectrum of the partially transposed density matrix of a bipartite system. The characterization
of the separability of continuous variable states using second-order moments of quadrature operators
was given in Refs. [6, 7]. For Gaussian states, whose statistical properties are fully characterized
by just second-order moments, this criterion was proven to be necessary and sufficient: A Gaussian
continuous variable state is separable if and only if the partial transpose of its density matrix is
non-negative (positive partial transpose (PPT) criterion).

The two-mode Gaussian state is entirely specified by its covariance matrix (5), which is a real,
symmetric and positive matrix with the following block structure:

σ(t) =

(
A C
CT B

)
, (11)

where A, B and C are 2× 2 Hermitian matrices. A and B denote the symmetric covariance matrices
for the individual reduced one-mode states, while the matrix C contains the cross-correlations between
modes.
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The 4 × 4 covariance matrix (11) (where all first moments can be set to zero by means of local
unitary operations which do not affect the entanglement) contains four local symplectic invariants
in form of the determinants of the block matrices A,B, C and covariance matrix σ. Based on these
invariants, Simon [6] derived the following PPT criterion for bipartite Gaussian continuous variable
states: the necessary and sufficient condition for separability is S(t) ≥ 0, where

S(t) ≡ det Adet B + (
1
4
− | detC|)2

−Tr[AJCJBJCTJ ]− 1
4
(detA + det B) (12)

and J is the 2× 2 symplectic matrix

J =

(
0 1
−1 0

)
. (13)

We suppose that the asymptotic state of the considered open system is a Gibbs state corresponding
to two independent quantum harmonic oscillators in thermal equilibrium at temperature T. Then the
quantum diffusion coefficients have the following form [12]:

mω1Dxx =
Dpxpx

mω1
=

λ

2
coth

ω1

2kT
,

mω2Dyy =
Dpypy

mω2
=

λ

2
coth

ω2

2kT
, (14)

Dxpx = Dypy = Dxy = Dpxpy = Dxpy = Dypx = 0.

The elements of the covariance matrix can be calculated from Eqs. (9), (10). Solving for the time
evolution of the covariance matrix elements, we can obtain the entanglement dynamics by using the
Simon criterion.

In order to quantify the degree of entanglement of the infinite-dimensional bipartite system states
of the two oscillators it is suitable to use the logarithmic negativity. For a Gaussian density operator,
the logarithmic negativity is completely defined by the symplectic spectrum of the partial transpose of
the covariance matrix. It is given by EN = − log2 2ν̃−, where ν̃− is the smallest of the two symplectic
eigenvalues of the partial transpose σ̃ of the 2-mode covariance matrix σ :

2ν̃2
∓ = ∆̃∓

√
∆̃2 − 4 detσ (15)

and ∆̃ is the symplectic invariant (seralian), given by ∆̃ = detA + detB − 2 det C.
In our model, the logarithmic negativity is calculated as

EN (t) = −1
2

log2[4g(σ(t))], (16)

where

g(σ(t)) =
1
2
(detA + detB)− det C

−
([

1
2
(detA + det B)− detC

]2

− detσ(t)

)1/2

. (17)

It determines the strength of entanglement for EN (t) > 0, and if EN (t) ≤ 0, then the state is separable.
In the following, we analyze the dependence of the Simon function S(t) and of the logarithmic

negativity EN (t) on time t and temperature T of the thermal bath, with the diffusion coefficients given
by Eqs. (14). We consider two types of the initial Gaussian states: 1) separable and 2) entangled.
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Figure 1: Logarithmic negativity EN versus time t and temperature T for an entangled initial vacuum
squeezed state with squeezing parameter r = 4 and λ = 0.1, ω1 = ω2 = 1. We take m = h̄ = k = 1.

1) We consider a separable initial Gaussian state, with the two modes initially prepared in their
single-mode squeezed states (unimodal squeezed state) and with its initial covariance matrix taken of
the form

σs(0) =
1
2




cosh r sinh r 0 0
sinh r cosh r 0 0

0 0 cosh r sinh r
0 0 sinh r cosh r


 , (18)

where r denotes the squeezing parameter. In this case S(t) becomes strictly positive after the initial
moment of time (S(0) = 0), so that the initial separable state remains separable for all values of the
temperature T and for all times.

2) The evolution of an entangled initial state is illustrated in Figure 1, where we represent the
dependence of the logarithmic negativity EN (t) on time t and temperature T for an entangled initial
Gaussian state, taken of the form of a two-mode vacuum squeezed state, with the initial covariance
matrix given by

σe(0) =
1
2




cosh r 0 sinh r 0
0 cosh r 0 − sinh r

sinh r 0 cosh r 0
0 − sinh r 0 cosh r


 . (19)

We observe that for a non-zero temperature T, at certain finite moment of time, which depends on
T, EN (t) becomes zero and therefore the state becomes separable. This is the so-called phenomenon
of entanglement sudden death. It is in contrast to the quantum decoherence, during which the loss
of quantum coherence is usually gradual. For T = 0, EN (t) remains strictly positive for finite times
and tends asymptotically to 0 for t → ∞. Therefore, only for zero temperature of the thermal bath
the initial entangled state remains entangled for all finite times and this state tends asymptotically
to a separable one for infinitely large time. One can also show that the dissipation favorizes the
phenomenon of entanglement sudden death – with increasing the dissipation parameter λ, the entan-
glement suppression happens earlier [15].

Using the diffusion coefficients given by Eqs. (14), we obtain from Eq. (10) the following elements
of the asymptotic matrices A(∞) and B(∞) :

mω1σxx(∞) =
σpxpx(∞)

mω1
=

1
2

coth
ω1

2kT
, σxpx(∞) = 0,

mω2σyy(∞) =
σpypy(∞)

mω2
=

1
2

coth
ω2

2kT
, σypy(∞) = 0 (20)
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and of the entanglement matrix C(∞) :

σxy(∞) = σxpy(∞) = σypx(∞) = σpxpy(∞) = 0. (21)

In our case, the asymptotic logarithmic negativity is given by (for ω1 ≤ ω2)

EN (∞) = − log2 coth
ω2

2kT
. (22)

It depends only on temperature, and does not depend on the initial Gaussian state [16, 17, 18].
EN (∞) < 0 for T 6= 0 and EN (∞) = 0 for T = 0. Consequently, the equilibrium asymptotic state
is always separable in the case of two non-interacting harmonic oscillators immersed in a common
thermal reservoir.

3.2 Gaussian quantum discord

The separability of quantum states has often been described as a property synonymous with the
classicality. However, recent studies have shown that separable states, usually considered as being
classically correlated, might also contain quantum correlations. Quantum discord was introduced
[3, 4] as a measure of all quantum correlations in a bipartite state, including – but not restricted to –
entanglement. Quantum discord has been defined as the difference between two quantum analogues of
classically equivalent expression of the mutual information, which is a measure of total correlations in a
quantum state. For pure entangled states quantum discord coincides with the entropy of entanglement.
Quantum discord can be different from zero also for some mixed separable state and therefore the
correlations in such separable states with positive discord are an indicator of quantumness. States
with zero discord represent essentially a classical probability distribution embedded in a quantum
system.

For an arbitrary bipartite state ρ12, the total correlations are expressed by quantum mutual infor-
mation [19]

I(ρ12) =
∑

i=1,2

S(ρi)− S(ρ12), (23)

where ρi represents the reduced density matrix of subsystem i and S(ρ) = −Tr(ρ ln ρ) is the von
Neumann entropy. Based on a complete set of local projectors {Πk

2} on the subsystem 2, the classical
correlation in the bipartite quantum state ρ12 can be given by

C(ρ12) = S(ρ1)− inf{Πk
2}{S(ρ1|2)}, (24)

where S(ρ1|2) =
∑

k pkS(ρk
1) is the conditional entropy of subsystem 1 and inf{S(ρ1|2)} represents the

minimal value of the entropy with respect to a complete set of local measurements {Πk
2}. Here, pk is

the measurement probability for the kth local projector and ρk
1 denotes the reduced state of subsystem

1 after the local measurements. Then the quantum discord is defined by

D(ρ12) = I(ρ12)− C(ρ12). (25)

Originally the quantum discord was defined and evaluated mainly for finite dimensional systems.
Very recently [20, 21] the notion of discord has been extended to the domain of continuous variable
systems, in particular to the analysis of bipartite systems described by two-mode Gaussian states.
Closed formulas have been derived for bipartite thermal squeezed states [20] and for all two-mode
Gaussian states [21].

The Gaussian quantum discord of a general two-mode Gaussian state ρ12 can be defined as the
quantum discord where the conditional entropy is restricted to generalized Gaussian positive operator
valued measurements (POVM) on the mode 2 and in terms of symplectic invariants it is given by (the
symmetry between the two modes 1 and 2 is broken) [21]

D = f(
√

β)− f(ν−)− f(ν+) + f(
√

ε), (26)
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Figure 2: Gaussian quantum discord D versus time t and temperature T for an entangled initial
vacuum squeezed state with squeezing parameter r = 4 and λ = 0.1, ω1 = ω2 = 1. We take m = h̄ =
k = 1.

where

f(x) =
x + 1

2
log

x + 1
2

− x− 1
2

log
x− 1

2
, (27)

ε =





2γ2 + (β − 1)(δ − α) + 2|γ|√γ2 + (β − 1)(δ − α)
(β − 1)2

,

if (δ − αβ)2 ≤ (β + 1)γ2(α + δ)

αβ − γ2 + δ −√
γ4 + (δ − αβ)2 − 2γ2(δ + αβ)

2β
,

otherwise,

(28)

α = 4 detA, β = 4detB, γ = 4 detC, δ = 16 detσ, (29)

and ν∓ are the symplectic eigenvalues of the state, given by

2ν2
∓ = ∆∓

√
∆2 − 4 det σ, (30)

where ∆ = detA + detB + 2 detC. Notice that Gaussian quantum discord only depends on | detC|,
i.e., entangled (detC < 0) and separable states are treated on equal footing.

The evolution of the Gaussian quantum discord D is illustrated in Figure 2, where we represent
the dependence of D on time t and temperature T for an entangled initial Gaussian state, taken of
the form of a two-mode vacuum squeezed state (19), for such values of the parameters which satisfy
for all times the first condition in formula (28). The Gaussian discord has nonzero values for all finite
times and this fact certifies the existence of nonclassical correlations in two-mode Gaussian states –
either separable or entangled. Gaussian discord asymptotically decreases in time, compared to the
case of the logarithmic negativity, which has an evolution leading to a sudden suppression of the
entanglement. For entangled initial states the Gaussian discord remains strictly positive in time and
in the limit of infinite time it tends asymptotically to zero, corresponding to the thermal product
(separable) state, with no correlation at all. One can easily show that for a separable initial Gaussian
state with covariance matrix (18) the quantum discord is zero and it keeps this value during the whole
time evolution of the state.

From Figure 2 we notice that, in concordance with the general properties of the Gaussian quantum
discord [21], the states can be either separable or entangled for D ≤ 1 and all the states above the
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threshold D = 1 are entangled. We also notice that the decay of quantum discord is stronger when
the temperature T is increasing.

It should be remarked that the decay of quantum discord is very similar to that of the entanglement
before the time of the sudden death of entanglement. In the vicinity of a zero logarithmic negativity
(EN = 0), the nonzero values of the discord can quantify the nonclassical correlations for separable
mixed states and one considers that this fact could make possible some tasks in quantum computation
[22].

4 Summary

In the framework of the theory of open systems based on completely positive quantum dynamical
semigroups, we reviewed the Markovian dynamics of quantum correlations for a subsystem composed of
two non-interacting modes embedded in a thermal bath. We have presented and discussed the influence
of the environment on the dynamics of quantum entanglement and quantum discord for different
initial states. We have described the time evolution of the logarithmic negativity, which characterizes
the degree of entanglement of the quantum state, in terms of the covariance matrix for Gaussian
input states, for the case when the asymptotic state of the considered open system is a Gibbs state
corresponding to two independent quantum harmonic oscillators in thermal equilibrium. The dynamics
of the quantum entanglement strongly depends on the initial states and the parameters characterizing
the environment (dissipation coefficient and temperature). For all values of the temperature of the
thermal reservoir, an initial separable Gaussian state remains separable for all times. In the case of an
entangled initial Gaussian state, entanglement suppression (entanglement sudden death) takes place
for non-zero temperatures of the environment. Only for a zero temperature of the thermal bath the
initial entangled state remains entangled for finite times, but in the limit of infinite time it evolves
asymptotically to an equilibrium state which is always separable. The time when the entanglement is
suppressed, decreases with increasing the temperature and dissipation.

We described also the time evolution of the Gaussian quantum discord, which is a measure of all
quantum correlations in the bipartite state, including entanglement. The values of quantum discord
decrease asymptotically in time. This behaviour is qualitatively different from the sudden death of
entanglement. The time evolution of quantum discord is very similar to that of the entanglement
before the sudden suppression of the entanglement. After the sudden death of the entanglement,
the nonzero values of quantum discord manifest the existence of quantum correlations for separable
mixed states. Quantum discord is decreasing with increasing the temperature. One considers that
the robustness of quantum discord could favorize the realization of scalable quantum computing in
contrast to the fragility of the entanglement [22].
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