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Abstract

We construct a model of internal gauge theory defined on a noncommutative Poisson manifold
considered as space-time. A covariant star product between Lie algebra valued differential forms is
introduced in order to develop the gauge theory. The constraints imposed by the Poisson structure
on the connection of the space-time are established and the property of associativity of the covariant
star product is verified. As an example, we consider the U(2) noncommutative gauge theory defined
on a symplectic space-time manifold endowed only with torsion. It is concluded that the constraints
imposed by the Poisson structure of the space-time and the associativity property of the covariant
star product completely determine in this case the connection of the space-time. Some comments
on the noncommutative gauge theory of gravitation are also made and possible generalizations are
emphasized.

1 Introduction

One of the most important problems in the contemporary physics is: how can we describe physics to

the Planck scale (LP =
√

Gh̄
c3

= 1, 6×10−35m ) ? There are suggestions that this can be done by some
generalization of the ordinary spaces which goes under the name of noncommutative geometry [1, 2,
3]. This explains the great attention given to the noncommutative theories and, in particular, to the
gauge theory formulated on a noncommutative spaces-time. One important motivation to adopt the
idea of noncommutative space-time is the hope that such a framework could offer the possibility to
develop a quantum theory of gravity, or at least to give an idea of how this could be achieved [4, 5,
6, 7, 8, 9]. There are two major candidates to quantum gravity: string theory [10] and loop quantum
gravity [11].

It is believed that gravity could be quantized if it is formulated in terms of Poisson or symplectic
geometry rather than Riemannian geometry, in the context of emergent gravity [27, 28] (for further
developments, see [29]). The motivation is that any Poisson manifold can always be quantized at least
in the context of deformation quantization [19]. In addition, the emergent gravity is deeply related to
the string theory. Many essential aspects of string theory such as AdS/CFT correspondence, open-
closed string duality, noncommutative geometry, mirror symmetry, etc. have also been realized in
the context of emergent noncommutative geometry. It is even claimed that string theory is simply a
“stringy” realization of symplectic or Poisson space-time. This argues again why the quantization of
gravity seems to dictate a Poisson (or symplectic) structure to space-time manifold.

Regarding the quantization of gravity we emphasize the possibility that there could be a connection
between the gravitational constant G and an intrinsic Poisson structure

θ =
1
2
θµν (x)

∂

∂xµ
∧ ∂

∂xν
(1.1)

of space-time, since θµν carries the physical dimension of (length)2 in natural units (h̄ = c = 1) like
G. Mathematically, the quantization of a dynamic system is realized by specifying first an underlying
Poisson structure. The dynamic system is described by a Poisson manifold (M, η), where

η = h̄
∂

∂xi
∧ ∂

∂pi
(1.2)
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defines the Poisson bracket

{f, g} = h̄

(
∂f

∂xi

∂g

∂pi
− ∂f

∂pi

∂g

∂xi

)
. (1.3)

The Poisson structure η is dimensionless like as θ. Then, the physical observables are replaced by
self-adjoint operators and the Poisson bracket (1.3) is replaced by a quantum bracket

{f, g} → −i
[
f̂ , ĝ

]
. (1.4)

In the same way one can define a Poisson bracket using the Poisson structure θ of the space-time
manifold M . In the case where θµν is a constant co-symplectic matrix of rank 2n, one can apply
the same canonical quantization to the Poisson manifold (M, θ). Now, the space-time M becomes a
noncommutative one, i.e.,

[xµ, xν ] = iθµν . (1.5)

Therefore, the coordinates of space-time are also operators like components of momentum.
Noncommutative geometry and in particular gauge theory of gravity are intimately connected

with both these approaches and the overlaps are considerable [5]. String theory is one of the strongest
motivations for considering noncommutative space-times geometries and noncommutative gravitation.
It has been shown, for example, that in the case when the end points of strings in a theory of open
strings are constrained to move on D-branes in a constant B-field background and one considers the low-
energy limit, then the full dynamics of the theory is described by a gauge theory on a noncommutative
space-time [12].

Recently, it has been argued that the dynamics of the noncommutative gravity arising from
string theory [13] is much richer than some versions of the proposed noncommutative gravity. It is
suspected that the reason for this is the non-covariance of the Moyal star product under space-time
diffeomorphisms. A geometrical approach to noncommutative gravity, leading to a general theory of
noncommutative Riemann surfaces in which the problem of the frame dependence of the star product
is also recognized, has been proposed in [14] (for further developments, see [15, 16]).

Since the early days of quantum mechanics, the physicists have used star products to build non-
commutative generalizations of commuting theories [17]. The first idea has been to consider the
quantization as a deformation of the algebra of classical observables of functions on phase space,
where the first order term O (h̄) is taken to be the classical Poisson bracket [18]. Star products have
been applied then in many areas of physics, including string theory.

Starting with the works of Kontsevich [19], Cattaneo and Felder [20] and many others, the star
product of functions on general Poisson manifolds is well known, in standard coordinates on Rd, to
all orders in the deformation parameter. Recently, an explicit form of a covariant star of functions
on Poisson manifolds with torsion-free linear connection has been constructed up to the third order
O

(
h̄3

)
[21].

In order to formulate a noncommutative gauge theory it is necessary to generalize the star product
to the exterior algebra of differential forms. A covariant star product has been defined in Refs. [22,
23] and the result was extended to case of Lie algebra valued differential forms in Refs. [24, 25, 26].
It has been shown that the graded differential Poisson algebra endows the space-time manifold with
a connection having both curvature and torsion (not necessarily torsion-free) [22] and places some
constraints upon it. We can try to apply the covariant star product to the case when the space-time
is a Poisson or a symplectic manifold which has only curvature, but the torsion vanishes. Then,
the restriction imposed by the associativity property of the covariant star product requires also the
vanishing curvature. The corresponding connection is flat symplectic and this reduces drastically the
applicability area of the covariant star product. Of course, it is possible to have a manifold having
both curvature and torsion or only torsion.

In this paper we develop a gauge theory on a Poisson manifold considered as space-time. We
introduce a covariant ?− product between functions or physical fields considering a connection on the
space-time M which has only torsion. The noncommutative gauge fields and their strength tensor
are expressed in function of the commutative components by using the covariant Seiberg-Witten map
[33].
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2 Structure of a Poisson manifold

In what follows we will consider a noncommutative space-time M endowed with the coordinates xµ,
µ = 1, 2, 3, 0 satisfying the commutation relations

[xµ, xν ] = i θµν (x) , (2.1)

where θµν (x) = − θνµ (x) is a Poisson bivector [22, 23, 30]. We use this bivector to define a Poisson
bracket on M

{f, g} = θµν∂µf∂νg. (2.2)

It satisfies the following basic properties
(1) Skew symmetry :

{f, g} = −{g, f} ; (2.3)

(2) Jacobi identity :
{{f, g} , h}+ {{g, h} , f}+ {{h, f} , g} = 0; (2.4)

(3) Pr oduct rule :
{f, gh} = {f, g}h + g {f, h} ; (2.5)

Because the Poisson bracket obeys the Jacobi identity, the bivector θµν must satisfy the following
condition

θµρ∂ρθ
νσ + θνρ∂ρθ

σµ + θσρ∂ρθ
µν = 0. (2.6)

If a Poisson bracket is defined on M , then M is called a Poisson manifold (see [30] for mathematical
details).

Suppose now that the bivector θµν (x) has an inverse ωµν (x), i.e.

θµρωρν = δµ
ν . (2.7)

If the differential 2-form ω = 1
2ωµνdxµ∧dxν associated to ωµν (x) is non-degenerate (detωµν 6= 0) and

closed (dω = 0), then it is called a symplectic 2-form and M - a symplectic manifold. It can be
verified that the condition dω = 0 is equivalent with the equation (2.6) [22, 23, 30]. In this paper we
will consider some applications which correspond to the case when M is symplectic, but many general
results will refer to Poisson manifolds.

Because the gauge theories involve Lie-valued differential forms such as gauge potential 1-form
A = Aa

µ (x) Tadxµ = Aµdxµ, Aµ = Aa
µ (x) Ta, where Ta are the infinitesimal generators of a symmetry

group G, we need to generalize the definition of the Poisson bracket to differential forms and define
then an associative star product for such cases. Many of these problems were solved in Ref. [22, 23, 30].
In Refs. [24, 25] these results have been generalized to the case of Lie algebra valued differential forms.
This generalization has the effect that the commutator of differential forms can be a commutator or
an anti-commutator, depending on their degrees.

Assuming that θµν (x) is invertible, we can always write the Poisson bracket {x, dx}in the
form [30]

{xµ, dxν} = −θµσΓν
σρdxρ, (2.8)

where Γν
σρ are some functions of x transforming like a connection under general coordinate transfor-

mations. As Γν
σρ is generally not symmetric, on can use the 1-forms of connection

Γ̃µ
ν = Γµ

νρdxρ, Γµ
ν = dxρΓµ

ρν , (2.9)

to define two kinds of covariant derivatives ∇̃ and ∇, respectively. The curvatures for these two
connections are

R̃ν
λρσ = ∂ρΓν

λσ − ∂σΓν
λρ + Γν

τρΓ
τ
λσ − Γν

τσΓτ
λρ, (2.10)

Rν
λρσ = ∂ρΓν

σλ − ∂σΓν
ρλ + Γν

ρτΓ
τ
σλ − Γν

στΓ
τ
ρλ. (2.11)

173



Because the connection coefficients Γρ
µν are not symmetric (Γρ

µν 6= Γρ
νµ), the symplectic manifold M

has also a torsion defined as usually [30] by

T = Γρ
µν − Γρ

νµ. (2.12)

The connection satisfies the identity [22]

[∇µ,∇ν ] α = −Rσ
ρµν ∧ iσα− T ρ

µν∇ρα, (2.13)

and an analogous formula applies for ∇̃ . Here, α is an arbitrary differential k-form

α =
1
k!

αµ1....µk
dxµ1....µk , (2.14)

and iσα denotes the interior product which maps the k-form into a (k − 1)-form

iσα =
1

(k − 1)!
ασµ2....µk

dxµ2....µk . (2.15)

It has been proven that in order the Poisson bracket satisfies the Leibniz rule

d {f, g} = {df, g}+ {f, dg} , (2.16)

the bivector θµν (x) must obeys the property [22, 23]

∇̃θµν = ∂ρθ
µν + Γµ

σρθ
σν + Γν

σρθ
µσ ≡ 0. (2.17)

Thus θµν is covariant constant under ∇̃, and ∇̃ is named a symplectic connection, because it annihilates
the symplectic 2-form ω. One can use the Leibniz condition (2.17) together with the Jacobi identity
for the Poisson bivector θµν to obtain the cyclic relation for torsion

∑
(µ,ν,σ)

θµρθνσT λ
ρσ = 0. (2.18)

Note that while this relation shows that that a torsion-free connection identically satisfies the property
(2.18), the Jacobi identity does not require the connection to be torsionless. Also note that (2.17) and
the Jacobi identity for the Poisson bivector can be combined to obtain the following cyclicity property

∑
(µ,ν,σ)

θµρ∇ρθ
νσ = 0. (2.19)

If in addition to restriction ∇̃ρθ
µν = 0, one imposes ∇ρθ

µν = 0, the torsion vanishes, T ρ
µν = 0, and

there is only one covariant derivative ∇ = ∇̃. In this paper, we do not require that ∇ρθ
µν = 0.

Now we generalize the Poisson bracket to include differential forms. Let us consider some
arbitrary differential forms α, β, γ and denote their degrees respectively by |α| , |β| and |γ|. We define
then a graded differential Poisson algebra on the manifold M as the set of all differential forms
satisfying the following properties

(i) Bracket degree : |{α, β}| = |α|+ |β| ;
(ii) Graded symmetry : {α, β} = (−1)|α||β|+1 {β, α} ;
(iii) Graded product rule : {α, βγ} = {α, β} γ + (−1)|α||β| β {α, γ} ;
(iv) Leibniz rule : d {α, β} = {dα, β}+ (−1)|α| {α, dβ} ;
(v) Graded Jacobi identity :

{α, {β, γ}}+ (−1)|α|(|β|+|γ|) {β, {γ, α}}+ (−1)|γ|(|α|+|β|) {γ, {α, β}} = 0.
These properties naturally combine the defining characteristics of differential forms and the Poisson

bracket. The Leibniz rule and the graded Jacobi identity place strong conditions on the Poisson
brackets of differential forms. In fact, the properties (i) – (v) uniquely determine the form of the
Poisson bracket.
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Using the graded product rule (iii), we can prove the following general expression of the
Poisson bracket between differential form [22, 23]

{α, β} = θµν∇µα ∧∇νβ + (−1)|α| R̃µν ∧ (iµα) ∧ (iνβ) , (2.20)

where |α| is the degree of the differential form α, and

R̃µν =
1
2
R̃µν

ρσdxρ ∧ dxσ, R̃µν
ρσ = θµλR̃ν

λρσ. (2.21)

It can be proven that in order that (2.20) satisfies the properties of the graded differential Poisson
bracket, the following restrictions on the connection coefficients must be imposed [23]

(a) ∇̃ is symplectic : ∇̃ρθ
µν = 0;

(b) satisfies the Jacobi identity : θµρ∂ρθ
νσ + θνρ∂ρθ

σµ + θσρ∂ρθ
µν = 0;

(c) The connection has vanishing curvature : Rν
λρσ = 0;

(d) The curvature is covariant constant : ∇λR̃µν
ρσ = 0.

As a consequence of these restrictions, the following condition satisfied by the curvature can be
obtained [22, 23]

R̃µν ∧
(
iνR̃

ρσ
)

+ R̃ρν ∧
(
iνR̃

σµ
)

+ R̃σν ∧
(
iνR̃

µρ
)

= 0. (2.22)

Finally, we remark that if a connection exists that satisfies all these properties, then we have
completely determined expression of the Poisson bracket between two arbitrary differential forms.
This bracket is the only possible bracket between differential forms on a symplectic manifold.

3 Covariant ?− product

What is generally done to construct a noncommutative gauge theory and, in general a noncommutative
field theory, is to deform the ordinary pointwise commutative product among functions or differential
forms on space-time with the introduction of a star product which is noncommutative and reduces to
the usual one in a certain limit. The choice of the star product compatible with the noncommutativity
(2.1) is not unique. In this work we use the covariant star product defined in Ref. [22] for differential
forms and generalized to the case of Lie algebra valued differential forms in [22] and which has been
generalized to Lie algebra valued differential forms in [25, 26].

The covariant star product between arbitrary differential forms that we will consider here has the
general form

α ? β = α ∧ β +
∑∞

n=1

(
ih̄

2

)n

Cn (α, β) , (3.1)

where Cn (α, β) are bilinear differential operators satisfying the generalized Moyal symmetry [22, 25]

Cn (α, β) = (−1)|α||β|+n Cn (β, α) . (3.2)

The operator C1 (α, β) coincides with the Poisson bracket, i.e. C1 (α, β) = {α, β}. An expression for
C2 (α, β) has been obtained also in Ref. [22] (see Appendix) so that the star product (??) satisfies the
property of associativity

(α ? β) ? γ = α ? (β ? γ) . (3.3)

In order to simplify presentation and give some simple illustrative examples, we will consider the
case when the symplectic manifold M has only torsion. Since the curvature Rν

λρσ is vanishing [see Eq.
(2.12)], one obtains the following relation between the curvature R̃ and the torsion T [22]

R̃σ
µνρ = ∇µT σ

νρ. (3.4)

This relation shows that the curvature R̃σ
µνρ vanishes too if the torsion T σ

νρ is covariant constant, i.e.

∇µT σ
νρ = 0. (3.5)
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Therefore, if the torsion is covariant constant, the symplectic manifold M has only torsion but not
curvature.

For such a symplectic manifold, the bilinear differential operators C1 (α, β) and C2 (α, β) in the
star product (3.1) proposed in Ref. [22] reduce to the simpler forms

C1 (α, β) = {α, β} = θµν∇µα ∧∇νβ, (3.6)

C2 (α, β) =
1
2
θµνθρσ∇µ∇ρα ∧∇ν∇σβ +

1
3
(θνρ∇ρθ

µσ (3.7)

+
1
2
θµρθσλT ν

ρλ)(∇µ∇να ∧∇σβ −∇µα ∧∇ν∇σβ).

We can verify that the covariant star product with torsion defined in (??)–(??) is associative [26].
Now, we extend the above covariant star product to the case of Lie algebra valued differential

forms. Suppose that we have an internal gauge group G whose infinitesimal generators Ta satisfy the
algebra

[Ta, Tb] = if c
abTc, a, b, c = 1, 2, ...., m (3.8)

with the structure constants f c
ab = −f c

ba. If α = αaTa and β = βbTb are two arbitrary such forms,
where αa and βb are ordinary differential forms of degrees |α| and |β| respectively, then their covariant
star product has the expression [24]

α ? β = α ∧ β +
∑∞

n=1

(
ih̄

2

)n

Cn (α, β) (3.9)

= αa ∧ βbTaTb +
∑∞

n=1

(
ih̄

2

)n

Cn

(
αa, βb

)
TaTb,

where Cn

(
αa, βb

)
are the bilinear operators given in (3.6)–(3.7) with α and β changed in αa and βb

respectively. It is important to remark that the operators Cn

(
αa, βb

)
satisfy the same generalized

Moyal symmetry (3.2), i.e.
Cn

(
αa, βb

)
= (−1)|α||β|+n Cn

(
βb, αa

)
(3.10)

Tacking into account the graded structure of our Poisson algebra, we define the commutator of
two Lie algebra valued differential forms α = αaTa and β = βbTb by

[α, β]? = α ? β − (−1)|α||β| β ? α. (3.11)

For example, if α and β are Lie algebra valued differential one− forms, we have

[α, β]? = αa ∧ βb [Ta, Tb] +
ih̄

2
C1

(
αa, βb

)
{Ta, Tb} (3.12)

+
(

ih̄

2

)2

C2

(
αa, βb

)
[Ta, Tb] + O

(
h̄3

)
.

This result shows that the star commutator of Lie algebra valued differential forms does not close in
general in the Lie algebra but in its universal enveloping algebra. Exceptions are the unitary groups
U (N) where this is true. The expressions of the operators C1

(
αa, βb

)
and C2

(
αa, βb

)
are those given

in (3.6) and (3.7) respectively, with α and β exchanged in αa and βb.
In the next Section we apply this covariant star product in order to develop a noncommutative

internal gauge theory.
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4 Noncommutative gauge theory

We suppose that G is a gauge group with the equations of structure given in (3.8) and denote the Lie
algebra valued infinitesimal parameter by

λ̂ = λ̂aTa. (4.1)

We use the hat symbol “ˆ” to denote the non-commutative quantities of our gauge theory. The
parameter λ̂ is a 0-form, i.e. λ̂a are functions of the coordinates xµ on the symplectic manifold .

Now, we define the gauge transformation of parameter λ̂ of the non-commutative Lie valued gauge
potential

Â = Âa
µ (x) Tadxµ = Âµdxµ, Âµ = Âa

µ (x) Ta, (4.2)

by
δ̂Â = dλ̂− i

[
Â, λ̂

]
?
. (4.3)

Here we consider the definition of the commutator [α, β]? of two arbitrary differential forms α and β
given in (3.11). Then, using the definition (3.9) of the covariant star product and the equations of
structure (3.8) of the gauge group, we can write (4.3) as

δ̂Âa = dλ̂a + fa
bcÂ

bλ̂c +
h̄

2
da

bcC1

(
Âb, λ̂c

)
− h̄2

4
fa

bcC2

(
Âb, λ̂c

)
+ O

(
h̄3

)
, (4.4)

where we noted {Ta, Tb} = da
bcTc. In fact, this notation is valid if the Lie algebra closes also for

anticommutator, as it happens for example in the case of unitary groups U (N). In general, the
commutators like

[
Â, λ̂

]
?

take values in the enveloping algebra [10]. Therefore, the gauge field Â and

the parameter λ̂ take values in this algebra. Let us write for instance Â = ÂITI and λ̂ = λ̂JTJ . Then
we have [

Â, λ̂
]
?

=
1
2

{
ÂI , λ̂J

}
?

[TI , TJ ] +
1
2

[
ÂI , λ̂J

]
?
{TI , TJ} . (4.5)

Thus, all products of the generators TI will be necessary in order to close the enveloping algebra. Its
structure can be obtained by successively computing the commutators and anti-commutators starting
from the generators of Lie algebra, until it closes [31, 32],

[TI , TJ ] = ifK
IJTK , {TI , TJ} = dK

IJTK .

Therefore, in our above notations and in what follows we understand this structure in general.
The operators C1

(
Âb, λ̂c

)
and C2

(
Âb, λ̂c

)
have the expressions [see Eqs. (3.6)–(3.7)]

C1

(
Âb, λ̂c

)
=

{
Âb, λ̂c

}
= θµν∇µÂb ∧∇ν λ̂

c, (4.6)

C2

(
Âb, λ̂c

)
=

1
2
θµνθρσ∇µ∇ρÂ

b ∧∇ν∇σλ̂c +
1
3
(θνρ∇ρθ

µσ (4.7)

+
1
2
θµρθσλT ν

ρλ)(∇µ∇νÂ
b ∧∇σλ̂c −∇µÂb ∧∇ν∇σλ̂c).

Here we use the definition of the covariant derivative

∇µÂa =
(
∂µÂa

ν − Γρ
µνÂ

a
ρ

)
dxν , (4.8)

and ∇ν λ̂
c ≡ ∂ν λ̂

cis understood.
We define also the curvature 2-form F̂ of the gauge potentials by

F̂ =
1
2
dxµ ∧ dxνF̂µν = dÂ− i

2

[
Â,̂ A

]
?
. (4.9)
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Then, using the definition (3.9) of the star product and the property (3.10) of the bilinear operators
Cn

(
αa, βb

)
, we obtain from (4.9)

F̂ a = dÂa +
1
2
fa

bcÂ
b ∧ Âc +

1
2

h̄

2
da

bcC1

(
Âb, Âc

)
(4.10)

−1
2

h̄2

4
fa

bcC2

(
Âb, Âc

)
+ O

(
h̄3

)
.

More explicitly, in terms of components we have

F̂ a
µν = ∇µÂa

ν −∇νÂ
a
µ + fa

bcÂ
b
µÂc

ν + Âa
ρT

ρ
µν +

h̄

2
da

bcC1

(
Âb

µ, Âc
ν

)
(4.11)

− h̄2

4
fa

bcC2

(
Âb

µ, Âc
ν

)
+ O

(
h̄3

)
.

where we used the definition , with

C1

(
Âb

µ, Âc
ν

)
= θρσ∇ρÂ

b
µ∇σÂc

ν , (4.12)

C2

(
Âb

µ, Âc
ν

)
=

1
2
θρσθλτ∇ρ∇λÂb

µ∇σ∇τ Â
c
ν +

1
3
(θρτ∇τθ

σλ (4.13)

+
1
2
θστθλφT ρ

τφ)(∇ρ∇σÂb
µ∇λÂc

ν −∇σÂb
µ∇ρ∇λÂc

ν).

Under the gauge transformation (4.3) the curvature 2-form F̂ transforms as

δ̂F̂ = i
[
λ̂, F̂

]
?
, (4.14)

where we used the Leibniz rule

d
(
α̂ ? β̂

)
= dα̂ ? β̂ + (−1)|α| α̂ ? d̂β, (4.15)

which we admit to be valid to all orders in h̄. In terms of the components (4.14) becomes

δ̂F̂ a = fa
bcF̂

bλ̂c +
h̄

2
da

bcC1

(
F̂ b, λ̂c

)
− h̄2

4
fa

bcC2

(
F̂ b, λ̂c

)
+ O

(
h̄3

)
. (4.16)

In the zeroth order, the formula (4.16) reproduces therefore the result of the commutative gauge theory

δF a
µν = fa

bcF
b
µνλ

c ⇒ δF = i [λ, F ] . (4.17)

Using again the Leibniz rule, we obtain the deformed Bianchi identity

dF̂ + i
[
F̂ , Â

]
?

= 0. (4.18)

If we apply the definition (3.11) of the star commutator, we obtain

dF̂ + i
[
F̂ , Â

]
=

[
h̄

2
da

bcC1

(
F̂ b, Âc

)
− h̄2

4
fa

bcC2

(
F̂ b, Âc

)]
Ta + O

(
h̄3

)
, (4.19)

or in terms of components

dF̂ a − fa
bcF̂

b ∧ Âc =
h̄

2
da

bcC1

(
F̂ b, Âc

)
− h̄2

4
fa

bcC2

(
F̂ b, Âc

)
+ O

(
h̄3

)
. (4.20)

We remark that in zeroth order we obtain from (4.19) the usual Bianchi identity

dF + i [F,A] = 0 (4.21)
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In addition, if the gauge group is U (1), the Bianchi identity (4.18) becomes

dF̂ = h̄C1

(
F̂ , Â

)
+ O

(
h̄3

)
. (4.22)

This result is also in accord with that of Ref. [30].
Having established the previous results, we can construct a noncommutative Yang-Mills (NCMY)

action. We will consider therefore the case when the gauge group is U(N). Let Gµν a metric on
the noncommutative space-time M [24]. We suppose that the metric Gµν belongs to the adjoint
representation of U(1) ⊂ U(N), in sense that Gµν = GµνI, where I is the unity matrix of U(N) in
this representation. Therefore, we consider the components of Gµν as Lie algebra-valued 0-forms. The
covariant derivative of the metric Gµν is

∇µGνρ = ∂µGνρ + GνσΓρ
µσ + GσρΓν

µσ (4.23)

If Gµν is not constant we have to modify it to be a gauge covariant metric for the (NCYM) action
[25, 30] in sense that it transforms like F̂ (see (4.18))

δ̂Ĝµν = i
[
λ̂, Ĝµν

]′
?

(4.24)

Then, using the definition (3.11) for the ? - commutator, we obtain from (4.24)

δ̂Ĝµν = θρσ∇ρĜ
µν∂σλ̂ + O

(
h̄3

)
. (4.25)

We can use the Seiberg −Witten map with covariant ?− product for a field which is in the adjoint
representation (as we consider to be Gµν) to obtain [33]

Ĝµν = Gµν −A0
ρθ

ρσ∇σGµν + O
(
h̄3

)
, (4.26)

where A0
ρ is the gauge field in the sector U (1) of U (N).

In order to construct the NCYM action for the gauge fields Aa
µ (x) , µ = 1, 2, 3, a = 0, 1, 2, ..., N2−1,

we use the definition for the integration of a function f (or of another quantity) over the noncommu-
tative space M as (for details see [35])

〈·〉 ≡ Tr =
∫

d4x |Pf (B)| (·) (4.27)

where B = θ−1 and Pf (B) denotes the Pfaffian of B, i.e. Pf (B) =
√

det (B).
The notation B = θ−1 is in connection with the very important result that for a D − brane in

a B field background (with B constant or not constant), its low energy effective theory lives on a
noncommutative space-time with the Poisson structure θ = B−1[34, 35, 36]. More exactly, it is shown
that the metric G introduced on the Poisson manifold M is connected with the metric g appearing in
the fundamental string (open or closed) action by relation G = −B−1gB−1 [12, 34, 35].

Now, we define the NCYM action by (see [24, 34])

ŜNCY M = − 1
2g 2

c

〈
tr

(
Ĝ ? F̂ ? Ĝ ? F̂

)〉
= (4.28)

= − 1
4g 2

c

〈(
Ĝµρ ? F̂ a

ρν ? Ĝνσ ? F̂aσµ

)〉
,

where gc is the Yang-Mills gauge coupling constant, and we have used the normalization property

tr (TaTb) =
1
2
δabI. (4.29)

Using the properties of gauge covariance (4.14) and (4.24) for F̂ and Ĝ respectively, we obtain

δ̂ŜNCY M = − h̄

2g 2
c

〈
C1

(
tr

(
ĜF̂ ĜF̂

)
, λ̂

)〉
+ O

(
h̄3

)
. (4.30)
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Now, since the integral is cyclic in the Poisson limit [34], i.e.

C1

(
tr

(
ĜF̂ ĜF̂

)
, λ̂

)
= 0, (4.31)

then the Eq. (4.30) becomes
δ̂ŜNCY M = 0 + O

(
h̄3

)
. (4.32)

Therefore, the action ŜNCY M is invariant up to the second order in h̄. The expression (4.28) of the
action can be further simplified as [24, 34]

ŜNCY M = − 1
2g 2

c

〈
tr

(
ĜF̂ ĜF̂

)〉
+ O

(
h̄3

)
= (4.33)

= − 1
4g 2

c

〈(
ĜµρF̂ a

ρνĜ
νσF̂aσµ

)〉
+ O

(
h̄3

)
.

Using the previous results we can obtain solutions for the noncommutative gauge field equations. An
example is given in Section 5 using the symplectic manifold M endowed with a covariant constant
torsion.

We can add, as usually, fields in our noncommutative gauge model. As an example, we
mention the case when the noncommutative U (N) gauge theory is coupled to a Higgs multiplet
Φ̂ (x) = Φ̂a (x) Ta in the adjoint representation. The integral of action for Φ̂ (x) is [37]

ŜHIGGS = − 1
2g 2

c

〈
tr

(
D̂µΦ̂ ? Ĝµν ? D̂νΦ̂

)〉
, (4.34)

where
D̂µΦ̂ = ∂µΦ̂− igc

[
Φ̂, Âµ

]
?

(4.35)

is the noncommutative gauge covariant derivative Φ̂ (x). Because this derivative is gauge covariant,
in the sense

δ̂
(
D̂µΦ̂

)
= i

[
λ̂, D̂µΦ̂

]
?
, (4.36)

the action ŜHIGGS is invariant as well as ŜNCY M up to the second order O
(
h̄2

)
. The action of the

noncommutative U (N) gauge fields coupled to Higgs multiplet Φ̂ (x) reads

ŜNC = − 1
2g 2

c

〈(
Ĝµρ ? F̂ρν ? Ĝνσ ? F̂σµ + D̂µΦ̂ ? Ĝµν ? D̂νΦ̂

)〉
. (4.37)

This action can be used to obtain solutions for the noncommutative version of the Yang-Mills-Higgs
model using the commutative ?-product defined on the manifold M by extending the results of [37]
where one uses the usual Moyal ?-product.

5 Example: noncommutative U (2) gauge theory

As a very simple example we consider the Poincaré gauge theory to construct the manifold M . Then,
suppose that we have the gauge fields ea

µ and fix the gauge ωab
µ = 0[38]. We define the connection

coefficients
Γρ

µν = eρ
a∂νe

a
µ, (5.1)

where eρ
a denotes the inverse of ea

µ. Obviously, the connection Γ defined by these coefficients is not
symmetric, i.e. Γρ

µν 6= Γρ
νµ. Define then the torsion by formula

T ρ
µν = Γρ

µν − Γρ
νµ. (5.2)

In order to simplify the calculation, we consider the case of spherically symmetry and choose the
gauge fields ea

µ as

ea
µ =

(
A, 1, 1,

1
A

)
, eρ

a =
(

1
A

, 1, 1, A

)
, (5.3)
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where A = A (r) is a function depending only on the radial coordinate r. Then, denoting the spherical
coordinates on M by (xµ) = (r, θ, φ, t) , µ = 1, 2, 3, 0, the non-null components of the connection
coefficients are

Γ0
10 = −A′

A
, Γ1

11 =
A′

A
(5.4)

It is easy to see that the only non-null components of the torsion are

T 0
01 = −T 0

10 =
A′

A
. (5.5)

Also, using the definitions (2.10) and (2.11) of the curvatures, we obtain

R̃0
101 = −R̃0

110 =
AA′′ − 2A′2

A2
, Rλ

µνρ = 0, (5.6)

and all other components of R̃λ
µνρ are vanishing. In these expressions, we denoted the first and second

derivatives of by A′ and A′′ respectively. The vanishing of the curvature Rλ
µνρ agrees with the constraint

imposed on the connection ∇.
Introduce then the noncommutative parameters θµν and suppose that we choose them so that

(θµν) =




0 0 0 − 1
A(r)

0 0 −b 0
0 b 0 0
1

A(r) 0 0 0


 , µ, ν = 1, 2, 3, 0, (5.7)

where b is a non-vanishing constant. Then, we have

∇̃1θ
01 = −∇̃1θ

10, ∇1θ
01 = −∇1θ

10 =
A′

A2
. (5.8)

This agrees with the constraint (2.17) that θµν is covariant constant under ∇̃.
Finally, if we impose also the condition of vanishing of the curvature R̃λ

µνρ, then from (5.6) we
obtain the following differential equation of the second order for the unknown function A (r):

AA′′ − 2A′2 = 0. (5.9)

The solutions of this equation is

A (r) = − 1
C1r + C2

, (5.10)

where C1 and C2 are two arbitrary constants of integration. Therefore, in our simple example, the
conditions necessary to define a covariant star product on a symplectic manifold M completely de-
termine its connection. In addition, it is very interesting to see that the covariant derivative of the
torsion, defined as

∇µT ν
ρσ = ∂µT ν

ρσ + Γν
λµT λ

ρσ − Γλ
ρµT ν

λσ − Γλ
σµT ν

ρλ, (5.11)

has the following non-null components

∇1T
0
01 = −∇1T

0
10 =

AA′′ − 2A′2

A2
. (5.12)

Then, tacking into account the equation (5.9), we conclude that the torsion is covariant constant,
∇µT ν

ρσ = 0, a result which is in concordance with the condition (3.5).
We develop now a noncommutative U (2) gauge theory on the space-time manifold M constructed

in the previous example. Denote the generators of group U (2) by Ta, a = k, 0, with k = 1, 2, 3;
here Tk = σk (σk− Pauli matrices) generates the SU (2)-sector, and T0 = I (I− the unit matrix) -
the U(1)-sector of the gauge group U (2). These generators satisfy the algebra (3.8), where only the
structure constant f i

jk = 2εijk (εijk - total antisymmetric Levi-Civita symbols) of the SU (2)-sector are
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non-vanishing, the other components of fa
bc being equal to zero. The anti-commutator {Ta, Tb} = dc

abTc

also belongs to the algebra of U (2), where d0
bc = 2δab, da

b0 = 2 are the only non-vanishing components.
We chose the 1-form gauge potential of U (2) of the form [39, 40]

A = uT3dt + w (T2dθ − sin θT1dφ) + vT0dt, (5.13)

where u,w, v are functions depending only on the radial coordinate r. We consider the metric Gµν

and its inverse Gµν of the form

Gµν = diag

(
1
N

, r2, r2 sin2 θ,−N

)
, Gµν = diag

(
N, r2, r2 sin2 θ,− 1

N

)
, (5.14)

respectively, where N is also a function depending only on r. For example, the following set of
functions

u = u0 +

√
q2 + g2 − 1

r
, w = 0, v = 0, N = 1− 2M

r
+

q2 + g2

r2
, (5.15)

( u0 being an arbitrary constant) describes a colored black hole in -sector [39, 40]. The metric Gµν

is of Reissner-Nordström type with electric charge q and magnetic charge g [40]. It is the simplest
solution of the Einstein-Yang-Mills field equations with a nontrivial gauge field.

Imposing then the variational principle δŜNCY M = 0, we can obtain the noncommutative
Yang-Mills field equations and their solutions. However, it is much simpler and equivalent to use
the Seiberg-Witten map and determine order by order the noncommutative gauge fields Âµ, the field
strength F̂µν and the metric Ĝµν .

To end this, we denote the noncommutative quantities of our model by λ̂ = λ̂aTa (the gauge
parameter), Â = Âµdxµ = Âa

µTadxµ (the 1-form gauge potential) and Ĝµν = ĜµνI (the metric), and
expand them as formal power series in h̄ (or equivalently in θµν)

λ̂ = λ + h̄λ(1) + h̄2λ(2) + · · ··, (5.16)

Âµ = Aµ + h̄A(1)
µ + h̄2A(2)

µ + · · ··, (5.17)

Ĝµν = Gµν + h̄Gµν(1) + h̄2Gµν(2) + · · ··, (5.18)

where the zeroth order terms λ, Aµ and Gµν are the ordinary (commutative) counterparts of λ̂, Âµ and
Ĝµν respectively. Using the Seiberg-Witten map for the noncommutative gauge theory with covariant
star product [33], we obtain the following expressions for the first order deformations

λ(1) =
1
4
θρσ {∂ρλ,Aσ} , (5.19)

A(1)
µ = −1

4
θρσ {Aρ,∇σAµ + Fσµ} , (5.20)

Gµν(1) = −θρσA0
ρ∇σGµν . (5.21)

Here we mention that the solution (5.10) and the particular form of the parameters θµν introduce in
fact three noncommutativity parameters in our model: C1, C2, and b. From now on we denote them
by: C1 = θ1 (of dimension T ), C2 = θ2 (of dimension LT ) and b = θ3(dimensionless).

The first order deformations of the field strength F̂µν can be obtained from the definition (4.9) by
using (5.20):

F (1)
µν = −1

4
θρσ ({Aρ,∇σFµν + DσFµν} − 2 {Fµρ, Fνσ}) , (5.22)

where
∇σFµν = ∂σFµν − Γρ

σµFρν − Γρ
σνFµρ (5.23)

is the covariant derivative (it concerns the space-time manifold M ) and

DσFµν = ∇σFµν − i [Aσ, Fµν ] (5.24)
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is the gauge covariant derivative (it concerns the gauge group U (2)).
In particular, for the colored black hole solution (5.15) we obtain

A
a(1)
0 =

(
0, 0,

θ1

2
sin (2θ) ,−

(
Au2

)′
2A2

)
(5.25)

Gµν(1) = 0, (5.26)

F (1)
µν =




0 0 0 − (u u′)′T0

A
0 0 θ1 sin (2θ) T0 0
0 − θ1 sin (2θ)T0 0 0

(u u′)′T0

A 0 0 0


 (5.27)

Here we denoted the derivative of u (r) with respect to r by u′. In the case when v (r) 6= 0, i.e. the
U (1) - sector is not empty, we obtain that the first order deformation Gµν(1) 6= 0. In particular,
we can use the solution (5.15) for the colored black hole, or other solutions with quantum numbers−→n = (n1, n2), to obtain the corresponding first order deformations in (5.25)–(5.27). All these results
can be also extended to the higher order deformations by using the “covariant” Seiberg-Witten map
[33].

Taking into account the solution (5.10) for A (r), we can verify that all these first order deformations
vanish if the noncommutativity parameters θ1, θ2, θ3 → 0. However, this limit cannot be achieved
because the symplectic structure of the space-time M imposes the condition det (θµν) 6= 0. But we
can discover the commutative limit considering h̄ → 0.

Finally, we mention that colored black holes and their generalizations with rotation and cosmo-
logical term, as well as solutions with cylindrical and plane symmetries have been also obtained [40].
It would be of interest to extend these results to a noncommutative gauge theory by using the above
formalism with covariant ? - product.

6 Conclusions and discussions

We constructed a model of noncommutative internal gauge theory by using a ?− product between Lie
algebra valued differential forms defined on a Poisson manifold. We followed the same way as in our
recent paper [24]. To simplify the calculations, we considered a space-time endowed only with torsion.
We have showed that, in order to satisfy the restrictions imposed by the associativity property of the
covariant star product, the torsion of the space-time has to be covariant constant, ∇µT ν

ρσ = 0. On
the other hand, we argued that a covariant star product defined in the case when the space-time is
a symplectic manifold endowed only with curvature is not possible. This is due to the restrictions
imposed by the associativity property of the covariant star product which requires also the vanishing
curvature. The corresponding connection is therefore flat symplectic and this reduces the applicability
area of the covariant star product.

An illustrative example has been presented starting from the commutative Poincaré gauge theory.
Using the gauge fields ea

µ and fixing the gauge ωab
µ = 0 [38], we defined the non-symmetric connection

Γρ
µν = eρ

a∂νe
a
µ. We deduced that, in this case, the conditions necessary to define a covariant star

product on a symplectic manifold M completely determine its connection.
Some other possibilities of applying this covariant star product have been also analyzed. First, it

will be very important to generalize the Seiberg-Witten map to the case when the ordinary derivatives
are replaced with covariant derivatives and the Moyal star product is the covariant one. Second, we
can try to develop a noncommutative gauge theory of gravity considering the symplectic manifold M
as the background space-time. For such a purpose, we have to verify if the non-commutative field
equations do not impose too many restrictive conditions on the connection Γρ

µν , in addition to those
required by the existence of the covariant star product. However, it remain unsolved the problem of
the gauge group which we can choose. The Poincaré group can not be used because it does not close
with respect to star product. A possibility will be to choose the group GL(2, C), but in this case
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we obtain a complex theory of gravitation [41, 42]. Another possibility is to consider the universal
enveloping of Poincaré group, but this is infinite dimensional and we must find criteria to reduce the
number of the freedom degrees to a finite one. Some possible ideas are given for the case of SU(N) or
GUT theories in Ref. [43], where it is argued that the infinite number of parameters can in fact all
expressed in terms of right number of classical parameters and fields via the Seiberg-Witten maps.

A similar aim of applying covariant ?− products has been pursued in a recent paper [44], though
with a different approach. Specifically, there are studied covariant ?− products on spaces of tensor
fields defined over a Fedosov manifold with a given symplectic structure and a given flat torsionless
symplectic connection.
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