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Abstract

Singletons are those unitary irreducible modules of the Poincaré or (anti) de Sitter group that
can be lifted to unitary modules of the conformal group. They appear in a wide variety of areas
of theoretical physics: AdS/CFT correspondence, higher-spin multiplets, infinite-component Ma-
jorana equations, etc. Singletons are reviewed through a list of their many equivalent definitions
in order to approach them from various perspectives.

1 Plan of a singleton sightseeing tour

The celebrated singletons are rather “remarkable representations”, as coined by Dirac in his seminal
paper [1] on the subject. Indeed, these representations of the anti de Sitter spacetime isometry group
possess several surprising properties which are so exceptional that they distinguish singletons from all
other such representations. Several of these properties are reviewed here, thereby providing an elemen-
tary introduction to singletons through a list, presumably inexhaustive, of their distinct but equivalent
definitions. Exhibiting the many faces of singletons could give some flavor of their ubiquitous appear-
ances in such seemingly unrelated areas of mathematical physics as the AdS/CFT correspondence,
the hydrogen atom spectrum, the infinite-component Majorana equation, the electric-magnetic duality,
etc. An exhaustive bibliographical survey of the wide range of results and applications for singletons
is by no means attempted here.1 On the contrary the main focus of this short introduction is on the
symmetries of singletons in any dimension and on their manifest realizations. No prior knowledge of
singletons is assumed, but some familiarity with the representation theory of Lie algebras is welcome.
The plan is as follows:

In order to be as self-contained as possible, the isometry groups of the anti de Sitter spacetime and
its conformal boundary are quickly reviewed in Section 2, as well as the corresponding representation
theory classifying the elementary particles that may live on these spaces. Then comes the section
3 which presents many faces of singletons: lowest weight modules (subsection 3.1), multiplicity free
modules (subsect 3.2), irreducible modules of isometry subalgebras (subsect 3.3), fields on the confor-
mal boundary (subsect 3.4), fields on the ambient space (subsect 3.5) and kernels of the Howe dual
algebra (subsect 3.6). The simplest example of singleton is the scalar one and it will serve throughout
this review as a useful illustration.

1The bibliography has been deliberately focused either on some recent general reviews with indications of the precise
location of the relevant information, or on some old seminal papers, in order to give some flavor of the early history
though from a modern viewpoint. I do apologize to the experts for the incompleteness of the bibliography.
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2 Elementary particles
on anti de Sitter spacetime

2.1 Anti de Sitter spacetime

The most transparent realization of AdSn+1 (n > 1) is via a global isometric embedding in a flat
ambient space:

• The ambient space Rn,2 is endowed with the

– Cartesian coordinates XA (where A = 0, 0′, 1, 2, . . . , n) and

– (“mostly plus”) metric ηAB = diag(−1,−1, +1, +1, . . . ,+1).

• The anti de Sitter spacetime AdSn+1 is the codimension one quadric (more precisely, a
one-sheeted hyperboloid)

ηABXAXB = −R2 ,

where R > 0 is the curvature radius, endowed with the induced metric.

So the isometry algebra is manifestly the real Lie algebra

o(n, 2) = spanR{JAB}

which can be presented

• by its generators (the ambient “angular momenta”)

JAB = −JBA (where A,B = 0, 0′, 1, 2, . . . , n).

• modulo the commutation relations

[JAB,JCD] = i ηBCJAD + antisymetrizations .

and is linearly realized on Rn,2 through the generators (the ambient “orbital angular momenta”)

JAB = XAPB −XBPA

where
PA = − i

∂

∂XA
.

Usually, one of the timelike direction of Rn,2, say 0′, is particularized. Equivalently, one of the
points of AdSn+1, say of coordinates X0′ = R and Xa = 0 (where a = 0, 1, 2, . . . , n), is particularized.
Then the generators decompose in two sets:

• The stabilizer of Xa = 0, i.e. the Lorentz subalgebra

o(n, 1) = spanC{Jab}

which can be presented

– by its generators Jab = −Jba (where a, b = 0, 1, 2, . . . , n)

– modulo the commutation relations

[Jab,Jcd] = i ηbcJad + antisymetrizations .

• The transvections (the displacements) generated by Γa := R J0′a and satisfying the commu-
tation relations

[Γa, Γb] =
i

R2
Jab .
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2.2 Conformal boundary

2.2.1 Conformal isometries of Minkowski spacetime

A conformal metric is an equivalence class of a metric under the equivalence relation

g′µν(x) ∼ Ω(x)gµν(x) (where µ, ν = 0, 1, 2, . . . , n− 1)

with Ω(x) > 0 for all xµ while a conformal isometry is a diffeomorphism such that the metric
transforms as

g′µν(x
′) = Ω(x)gµν(x) .

In other words, a (conformal) isometry is a diffeomorphism that preserves the (conformal) metric.
From now on, one will restrict to the case n > 3. In such case, the finite conformal isometries of

the Minkowski spacetime Rn−1,1 are generated (see e.g. [2] for a proof) by the:

• Lorentz transformations x′µ = Λµ
νx

ν , where Λ ∈ O(n− 1, 1) ,

• Translations: x′µ = xµ + aµ, where a ∈ Rn−1,1 ,

• Dilatations: x′µ = λxµ, where λ ∈ R0 := R− {0} ,

together with, either the:

• Special conformal transformations: x′µ = xµ+x2bµ

1+2bµxµ+b2x2 ,

where b ∈ Rn−1,1,

or the:

• Inversion: x′µ = xµ

x2 .

The special conformal transformations are the most difficult to visualize but they may be understood
indirectly from the following property: Special conformal transformations are conjugate to translations,
via the inversion.

The algebra of the infinitesimal conformal isometries of Rn−1,1 is o(n, 2) but this is far from obvious
in terms of the Cartesian coordinates xµ. Moreover, the last two transformations (special conformal
transformations and inversions) are not well defined everywhere on Rn−1,1 because they map some
points “at infinity” (when the denominator vanish). In order to make the conformal isometries well
defined globally, it is necessary to complete the Minkowski spacetime Rn−1,1 by adding “points at
infinity”. The corresponding conformal compactification of Rn−1,1 can be identified with the conformal
boundary of AdSn+1.

2.2.2 Conformal boundary of anti de Sitter spacetime

The most transparent realization of the conformal boundary ∂AdSn+1 of the anti de Sitter spacetime
AdSn+1 is via its global (conformal isometric) embedding in the projectivization of the ambient space
Rn,2:

• The ambient space is now the projective space P(Rn,2) ∼= RPn+1 endowed with the

– Homogeneous coordinates XA (where A = 0, 0′, 1, 2, . . . , n),

– Equivalence relation XA ∼ λ XA (for any λ ∈ R0)

– Conformal metric (i.e. the equivalence class of) ηAB

As usual, points of the projective space P(Rn,2) are rays of Rn,2.
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• The Dirac hypercone2 is the codimension one quadric (null cone)

ηABXAXB = 0

quotiented by the equivalence relation, endowed with the induced conformal metric. This con-
formal space is the conformal boundary of the anti de Sitter spacetime AdSn+1. Geometrically,
the points of ∂AdSn+1 are null rays of the ambient space Rn,2. Heuristically, the boundary of
the anti de Sitter spacetime is the asymptotic (i.e. located “at infinity”) region of intersection
between the hyperboloid and the hypercone.

So the conformal isometry algebra of the conformal boundary ∂AdSn+1 is manifestly the real
Lie algebra o(n, 2) linearly realized on P(Rn,2) through the (“ambient orbital angular momentum”)
generators and is linearly realized on Rn,2 through the generators JAB = X[APB], where the square
bracket denotes the antisymmetrization.

2.2.3 Conformal isometries revisited

The light-cone coordinates
X± := X0′ ±Xn

together with the inhomogeneous coordinates

xµ := Xµ/X− (where µ = 0, 1, 2, . . . , n− 1)

provide a convenient parametrization of the Dirac hypercone in a neighborhood such that X− 6= 0.
The hyperplane X− = 0 may be taken as the “hyperplane at infinity” to be added to the affine
space Rn+1 in order to construct RPn+1. If one identifies the conformal boundary of AdSn+1 with the
conformal compactification of Rn−1,1 then the “hyperplane at infinity” is indeed particularized.

The conformal isometries decompose as follows (see e.g. [4] for a short review):

• The ambient boosts X ′A = ΛA
BXB preserving the hyperplane X− = constant 6= 0, i.e. the

– Lorentz transformations:

X ′+ = X+, X ′µ = Λµ
νX

ν ⇐⇒ x′µ = Λµ
νx

ν

where Λ ∈ O(n− 1, 1).

– Translations:

X ′+ = aµXµ, X ′µ = Xµ + aµX− ⇐⇒ x′µ = xµ + aµ

• The ambient boosts in the plane 0′n ↔ +− which preserve the hyperplane at infinity X− = 0,
i.e. the dilatations:

X ′+ = λX+, X ′− = λ−1 X−, X ′µ = Xµ ⇐⇒ x′µ = λxµ

• The remaining transformations, i.e. the special conformal transformations:

X ′+ = X+, X ′− = bµXµ, X ′µ = Xµ + bµX+ ⇐⇒ x′µ =
xµ + x2bµ

1 + 2bµxµ + b2x2

• The reflection through the hyperplane Xn = 0, i.e. the inversion:

X ′+ = X−, X ′− = X+, X ′µ = Xµ ⇐⇒ x′µ =
xµ

x2

2This construction is the Euclidean analogue of the “Möbius model” in the mathematical literature. It was introduced
a long time ago in physics by Dirac in a paper [3] which still remains a splendid introduction to the ambient formulation.
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So the infinitesimal generators decompose as follows:

• The stabilizer of any hyperplane X− =constant 6= 0, i.e. the Poincaré subalgebra

io(n, 1) = spanR{Pµ,Jµν} = Rd B o(n− 1, 1)

which can be presented

– by its generators

Pµ := J+µ/2 , Jµν = −Jνµ (µ, ν = 0, 1, 2, . . . , n− 1)

– modulo the commutation relations

[Pµ,Pν ] = 0 ,

[Pµ,Jνρ] = i ηµνPρ + antisymetrization ,

[Jµν ,Jρσ] = i ηνρJµσ + antisymetrizations .

• The generator of ambient boosts in the plane 0′n ↔ +− which preserve the hyperplane at
infinity, i.e. the generator of dilatation

∆ := J+−

• The remaining generators, corresponding to the infinitesimal special conformal transformations

Kµ := J−µ

2.2.4 Distinct constant curvature spacetimes
as an identical conformal space

Actually, the conformal boundary of AdSn+1 may be identified with any of the three constant curvature
spacetimes (supplemented by “points at infinity”). These three spacetimes are geometrically realized
as quadrics obtained by intersecting the hypercone with an affine hyperplane:

• Minkowski spacetime Rn−1,1 endowed with the Cartesian coordinates xµ as before.

– Paraboloid: intersection with a hyperplane orthogonal to a light-like direction, say X− =
constant 6= 0

– Isometry algebra: Poincaré algebra io(n− 1,1)

• de Sitter spacetime dSn

– Hyperboloid: intersection with a hyperplane orthogonal to a time-like direction, say
X0′ = R 6= 0

– Isometry algebra: o(n,1)

• Anti de Sitter spacetime AdSn

– Hyperboloid: intersection with a hyperplane orthogonal to a space-like direction, say
Xn = R 6= 0

– Isometry algebra: o(n− 1,2)

The conformal compactifications of the three distinct constant curvature spacetimes Rn−1,1, dSn and
AdSn are identical: they reproduce the flat conformal space ∂AdSn+1. Indeed, all of these spacetimes
are conformally flat and they possess the same conformal isometry algebra o(n, 2). It is important
to emphasize this point because, although most of the time the conformal boundary ∂AdSn+1 is
identified with the conformal compactification of Minkowski spacetime Rn−1,1, from the point of view
of conformal geometry it can equivalently be taken to be the conformal compactification of (anti) de
Sitter spacetime (A)dSn. This remark is useful because most results which will be mentioned here
equally apply to all constantly curved spacetimes.
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2.3 Unitary irreducible representations

2.3.1 Elementary particles as irreducible modules

Let M be a maximally symmetric spacetime. A celebrated insight due to Wigner (see e.g. the section
2 of [5] for a review) states that there exists a one-to-one correspondence between the set of equivalence
classes of

(i) unitary representation on a unitary module (“representation space”) H of the isometry group of
M and

(ii) linear relativistic wave equations describing the free propagation of a particle on M.

The unitary module H is the Hilbert space of physical states (i.e. of inequivalent solutions of the wave
equation). This identification allows to define an elementary particle as an irreducible unitary
module of the isometry group of the spacetime M.

So the classification of the free elementary particles in the anti de Sitter spacetime M = AdSn+1

tantamounts to the classification of the irreducible unitary modules of o(n, 2). Strictly speaking,
the Hilbert space of physical states is usually the direct sum of two irreducible modules: the ones
with either positive or negative energy corresponding repsectively to the particle and its antiparticle.
Therefore, if the sign of the energy unspecified in the sequel, then the direct sum of the positive energy
module and its conjugate should be understood.

2.3.2 Isometry algebra of anti de Sitter spacetime

The maximal compact subalgebra o(2)⊕ o(n) of the real Lie algebra o(n, 2) corresponds to the

• time translations generated by the Hamiltonian E = M0′0

• spatial rotations generated by Jij (where i, j = 1, 2, . . . , n)

The remaining generators can be recast in the form of ladder operators

J±j = J0j ∓ iJ0′j ,

raising or lowering the energy (= eigenvalue of E) by one unit. Indeed, the real Lie algebra o(n, 2)
can be presented equivalently

• by the generators E, J±i , Jjk (where i, j, k = 1, 2, . . . , n)

• modulo the commutation relations
[
E,J±i

]
= ±J±i ;

[
Jij ,J

±
k

]
= 2iδk[jJ

±
i][

J−i ,J+
j

]
= 2(iJij + δijE)

[Jij ,Jkl] = iδjkJil + antisymetrizations

2.3.3 Orthogonal algebra

The classification of the irreducible unitary modules of o(n, 2) requires the knowledge of the classifi-
cation of the irreducible unitary modules of o(n), which can be summarized as follows (see e.g. the
section 3 of [5] for more details and references):

Irreducible unitary modules of the orthogonal group: Let n > 3 be a positive integer and [n
2 ]

denote the integer part of n
2 . Any unitary irreducible module D`1,...,`[ n

2 ]
of O(n) is a finite-dimensional

highest (and lowest) weight module which is

• either tensorial or spinorial,
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• labeled by a partition of an integer

|`| = `1 + `2 + . . . + `[n
2
]

in [n
2 ] parts (where `1 > `2 > . . . > `[n

2
] > 0).

The converse is also true.
A partition of |`| in p parts is usually depicted as a Young diagram made of |`| boxes arranged

in p left-justified rows of non-increasing lengths

`1 > `2 > . . . > `p > 0 .

A renowned example of o(n)-module is the spin-s module Ds corresponding to a partition of |`| =
s ∈ N in one part corresponds either to a

• tensorial module Ds of o(n) spanned by the components of a symmetric traceless tensor of rank
s, or a

• spinorial module Ds+1/2 of o(n) spanned by the components of a symmetric (gamma)-traceless
tensor-spinor of rank s.

2.3.4 Irreducible modules of the isometry algebra

A Verma module V(E0; `1, . . . , `[n
2
]) of o(n, 2) for E0 positive (or negative)

• is obtained by the action of the universal enveloping algebra U(
o(n, 2)

)
on the

• Lowest (or highest) weight vector |E0; `1, . . . , `[n
2
]〉 of o(n, 2), which is defined as a

– Lowest (or highest) energy E0 state

J−i |E0; `1, . . . , `[n
2
]〉 = 0

– Lowest (or highest) weight vector of o(n) labeled by

`1 > `2 > . . . > `[n
2
] > 0.

For the general definitions and properties of Verma modules, the reader may look for instance at the
concise review in [6]. The ground states of energy E0 span an irreducible finite-dimensional o(n)-
module labelled by the above partition.

For physical reasons, an elementary particle on anti de Sitter spacetime is taken to be a positive-
energy (lowest weight) unitary module, while its antiparticle is its opposite counterpart, so a negative-
energy (highest weight) unitary module. Both cases can be described as extremal weight unitary
modules.

Irreducible unitary modules of the isometry algebra: Any extremal weight irreducible module
D(E0; `1, . . . , `[n

2
]) of o(n, 2) is a quotient of the Verma module V(E0; `1, . . . , `[n

2
]) by its maximal

submodule V(E′
0; `

′
1, . . . , `

′
[n
2
]).

Unitarity imposes some restrictions (see e.g. [7] and refs therein) on the possible values of the extremal
energy when the ground state o(n)-module carries the

• trivial representation (`1 = `2 = . . . = `[n
2
] = 0): either

∗ E0 = 0, corresponding to the trivial o(n, 2)-module, or

∗ |E0| > n
2 − 1 corresponding to scalar field o(n, 2)-modules,

• spinor representation (`1 = `2 = . . . = `[n
2
] = 0):
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∗ |E0| > n−1
2 corresponding to the spinor field o(n, 2)-modules,

• generalized spin-s representation, labeled by a Young diagram with a upper rectangle made
of k rows with length [s] (i.e. a partition such that [s] = `1 = `2 = . . . = `k > `k+1 with
1 6 k 6 [n/2]):

∗ |E0| > s + n − k − 1 corresponding to tensorial (or spinorial) modules whether 2s is even
(or odd).

For more details on the n = 3 unitary irreducible modules, an excellent pedagogical introduction is
[8]. For more details on the generic construction of o(n, 2) unitary irreducible modules, one may look
at the appendices in [9].

3 Singletons: various definitions

3.1 Singletons as lowest weight modules

Singletons form the very exceptional subclass of the irreducible unitary modules of the algebra o(n, 2)
that saturate the unitary bound and whose ground states are caracterized by a rectangular Young
diagram of height k = n

2 (when n is even). The group-theoretic definition of singletons dates back
to the seminal works of Dirac [1] and Flato & Frønsdal [10]. The higher-dimensional generalization
was further developped by a variety of authors (a self-contained and rather complete treatment of the
generic case can be found in [11]):

Definition: A positive-energy singleton of AdSn+1 is a lowest weight unitary irreducible module of
o(n, 2) such that:

• When n is odd, the spin is

– either s = 1
2 : D(n−1

2 ; 1
2) called Di or spinor singleton

– or s = 0: D(n
2 − 1; 0) called Rac or scalar singleton

• When n is even, the (generalized) spin s is

– any (half)integer: D(s+n
2−1 ; [s], . . . , [s]) called spin s singleton and labeled by a partition

in n
2 equal parts, i.e. a rectangular Young diagram made of n

2 rows of length [s].

From now on, whenever singletons of spin s > 1 will be mentioned, the integer n will always be

implicitly assumed to be even, as it should.

As a nice illustration, the scalar singleton may deserve a more detailed discussion. A short review
of scalar singletons can be found in [12]. The scalar singleton corresponds to the case of a lowest
weight vector |E0; 0〉 of o(n, 2) annihilated by all generators of the o(n) subalgebra, except the energy:

(E− E0)|E0; 0〉 = 0 , Jij |E0; 0〉 = 0 , J−i |E0; 0〉 = 0 .

Thus the Verma module is

V(E0; 0) = spanR
{
J+

i1
. . .J+

is
|E0; 0〉 | s ∈ N

}

It can be shown (see e.g. [8] for n = 3) that unitarity implies E0 > n
2 −1 (or E0 = 0 which corresponds

to the trivial representation of o(n, 2) ). For the special value E0 = n
2 − 1 saturating the unitarity

bound, the vector δijJ+
i J+

j |E0; 0〉 is a primitive null vector. The scalar singleton is the unitary module
obtained by quotienting the maximal submodule

V
(n

2
+ 1; 0

) ∼= spanR
{
δi1i2J+

i1
. . .J+

is
|E0; 0〉 | s ∈ N

} ⊂ V
(n

2
− 1; 0

)
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from the Verma module. Concretely, this corresponds to factoring out the trace terms from the Verma
module:

D
(n

2
− 1; 0

) ∼=
spanR

{
J+

i1
. . .J+

is
|n/2− 1; 0〉 | δi1i2J+

i1
. . .J+

is
|n/2− 1; 0〉 ∼ 0

}

3.2 Singletons as multiplicity free modules

A nice corollary of the previous description is that under the restriction of o(n, 2) to its subalgebra
o(n), the scalar singleton module is decomposable as follows

D
(n

2
− 1; 0

)∣∣∣
o(n)

∼=
⊕

s∈N
Ds

where each irreducible o(n)-module Ds is an eigenspace of distinct energy
(
E− (

s +
n

2
− 1

))Ds = 0

and appears with multiplicity one. Actually, the terminology “singleton” originates3 from this absence
of degeneracy of o(n)-modules in the spectrum of the n = 3 “Di” and “Rac” modules, as observed
initially in [13]. This property generalizes to any dimension [14].

Theorem (Angelopoulos & Laoues, 2000): A positive energy singleton of AdSn+1 is a non-trivial
lowest weight unitary irreducible module of o(n, 2) such that its reduction to the compact orthogonal
subalgebra o(n) is multiplicity free. The corresponding weights of the maximal compact subalgebra
o(2)⊕ o(n) lie along a line in the weight diagram. More precisely,

D
(
s +

n

2
− 1 ; [s], [s], . . . , [s]

)∣∣∣
o(n)

∼=
⊕

t∈N
D[s]+t,[s],...,[s]

where each irreducible o(n)-module D[s]+t,[s],...,[s] is an eigenspace of distinct energy
(
E−

(
[s] + t +

n

2
− 1

))
D[s]+t,[s],...,[s] = 0

and appears with multiplicity one. Moreover, singletons are those non-trivial extremal weight unitary
irreducible modules of o(n, 2) such that their reduction to a compact Cartan subalgebra is multiplicity
free: there is at most a single linearly independent eigenvector (i.e. a “singlet”) for each weight.

As a side remark, one may observe that the previous properties are the roots of the earliest
appearances, but in disguised form, of the n = 3 singleton module in particle physicist through the so-
called infinite-component equations and the spectrum-generating algebras. These ideas were pushed
forward in the sixties by the “dynamical group” research programme which revived the seminal work
of Majorana [15]. A very concise account of Majorana’s publication itself and of the history of infinite-
component wave equations can be found in [16]. Such constructions were recently revisited in [17]
from a modern and shifted perspective (including a discussion of the higher-dimensional cases n > 4)
which will briefly reviewed now.

Because of the commutation relations of the algebra o(n, 2)

[Jab,Jcd] = i ηbcJad + antisymetrizations

[Γa, Γb] = iJab

the generators Γa can be reinterpreted as infinite-dimensional Dirac matrices from which the “spin-
ning” generators of o(n − 1, 1) are constructed as: Jab = −i Γ[a, Γb]. If the wave function ψ(x) on

3The author thank V.K. Dobrev for pointing out to him that the name “singleton” comes from this fact.
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the Minkowski spacetime Rn,1 takes values in the scalar singleton module D(n/2 − 1; 0), then the
Dirac-like (i.e. the Majorana infinite-component) equation

(ΓaPa − M)ψ(x) = 0

possesses a discrete spectrum of massive solutions. As one can see by looking at this equation in the
rest frame (Pa − m δ0

a)ψ(x) = 0, their masses m are related to their spin s by the relation

m =
M

s + n
2 − 1

since the eigenvalue of Γ0 = E on the spin-s o(n)-submodule Ds is equal to s + n
2 − 1. Unfortu-

nately, the “Regge trajectory” is decreasing so the infinite-component Majorana equation is physically
unsatisfactory. Furthermore, tachyonic and continuous spin particles also appear in the spectrum.

As a curiosity, one may mention the following observation [17] based on the above-mentioned
decomposition of the scalar singleton module: Consider an infinitely degenerate spectrum of massive
particles on the flat spacetime Rn,1 with equal mass for all spins (multiplicity one), i.e. a horizontal
Regge trajectory. In the rest frame, the massive particle of spin s is described by the irreducible
o(n)-module Ds, therefore the infinite tower of particles fits in an irreducible multiplet of o(n, 2)
corresponding to the scalar singleton module D(n

2 − 1; 0). One might speculate that such an infinite
multipler could come from a highly degenerate (and exotic) spontaneous symmetry breaking of the
anti de Sitter isometry algebra [17].

3.3 Singletons as irreducible modules
of isometry subalgebras

The following theorem of Angelopoulos & Laoues [11] extends to any n > 3 the previous result for the
case n = 3 of Angelopoulos, Flato, Frønsdal & Sternheimer [18].

Theorem (Angelopoulos & Laoues, 1998): A positive (or negative) energy singleton of AdSn+1

is a non-trivial lowest (or highest) weight unitary irreducible o(n, 2)-module that remains irreducible
(or, at most, splits in two) under restriction to any of the following subalgebras: io(n − 1, 1), o(n, 1)
and o(n− 1, 2). Conversely, a singleton on ∂AdSn+1 is a unitary irreducible (at most, a sum of two)
of any of the previous subalgebras, that can be lifted to a unitary module of o(n, 2).

Heuristically, this means that singletons of AdSn+1 are those fields:

• whose local physical degrees of freedom sit on its conformal boundary (so that one may also call
them singletons on ∂AdSn+1), and

• which are preserved by the conformal symmetries in spacetime dimension n.

The extremal weight unitary irreducible o(n, 2)-modules that are not singletons of AdSn+1 provide
the genuine elementary particles on AdSn+1. The fact that elementary particles may live both
on the boundary and in the bulk of anti de Sitter spacetime is the very basis of the AdSn+1/CFTn

correspondence.

Let the conformal boundary ∂AdSn+1 be identified with the conformal compactification of Rn−1,1.
The following theorem was found by Siegel in [19] but the entirely complete and rigorous proof was
given later in [11].

Theorem (Siegel, 1989): A positive-energy singleton on ∂AdSn+1 is a positive-energy massless
unitary irreducible module of io(n − 1, 1) induced (à la Wigner) by a finite dimensional irreducible
representation of the stabilizer io(n−2) labeled by a partition in n

2 −1 equal parts, i.e. by a rectangular
Young diagram made of n

2 − 1 rows of length [s].
The spin s singleton on the conformal compactification of Rn−1,1, seen as a representation of the

Poincaré subalgebra io(n− 1, 1), is called for

163



• n = 4, the helicity s representation, and for

• higher even n and s > 1, a spin s duality-symmetric representation when n/2 is even
or chiral representation when n/2 is odd, because the corresponding fieldstrength span an
irreducible o(n − 1, 1)-module described by a rectangular Young diagram made of n

2 rows for
which Hodge self-duality may be defined (more information on this point is provided in the the
next subsection).

Now let the conformal boundary ∂AdSn+1 be identified with the conformal compactification of
AdSn. The analogue of the previous theorem was obtained by Metsaev in [20] (see also [11] for a
proof).

Theorem (Metsaev, 1995): A positive-energy singleton on ∂AdSn+1 is a finite-component positive-
energy unitary irreducible o(n−1, 2)-module D(s+ n

2 −1; [s], . . . , [s]) saturating the unitarity bound and
whose lowest energy o(n−1)-module is labeled by a partition in n

2 −1 equal parts, i.e. by a rectangular
Young diagram made of n

2 − 1 rows of length [s].

Remark: It is important to stress that a singleton on ∂AdSn+1 is not a singleton of AdSn, but of
AdSn+1. Indeed, a singleton on ∂AdSn+1 has lowest energy s− 1 + n/2 while a singleton of AdSn has
lowest energy s − 1 + (n − 1)/2. Moreover, spin s > 1 singletons on ∂AdSn+1 exist only for n even
while spin s > 1 singletons of AdSn exist only for n odd.

A similar theorem holds for the conformal compactification of dSn as well [11].

3.4 Singletons as fields on
the conformal boundary

Singletons live on the conformal boundary so they can be described as fields on the corresponding
compactified spacetimes. The simplest example is the scalar singleton which can be described as a
massless (i.e. harmonic) scalar field φ(x) on Minkowski spacetime Rn−1,1 of conformal weight 1 − n

2
so that the d’Alembert equation

¤Rn−1,1 φ(x) = 0 is preserved by the conformal algebra o(n, 2) .

Equivalently, the scalar singleton may be described on (A)dSn through a linear wave equation involving
the conformal (or Yamabe) Laplacian

(
¤(A)dSn

± n(n− 2)
4R2

)
φ(x) = 0

where ¤ denotes the Laplace-Beltrami operator.
The spin-s singleton io(n− 1, 1)-module can be realized as a space of harmonic irreducible multi-

forms [21] (see e.g. the section 5 of [5] for a review of the general construction of Poincaré modules).
For n = 4, this construction reproduces the famous Bargmann-Wigner equations which are known to
be conformally symmetric since a long time ago [22]. For definiteness, one will focus on tensorial sin-
gletons, i.e. integer spin s ∈ N. Let θµ

i be a set (where µ, ν = 0, 1, 2, . . . , n−1 and i = 1, 2, . . . , s−1, s)
of fermionic coordinates

θµ
i θν

j + θν
j θν

i = 0 ,

on Π(Rn,2 ⊗ Rs) (where Π reverses the Grassmann parity).

Definitions:A (differential) multiform on Minkowski spacetime Rn−1,1 is

• a function ψ(xµ, θν
i ) on the superspace Rn−1,1 ⊕ Π(Rn−1,1 ⊗ Rs), i.e. tensor fields on Rn−1,1

with components described by a product of s columns. A multiform is:

• closed if it is annihilated by all operators di = ϑµ
i

∂
∂xµ

• coclosed if it is annihilated by all operators d†i = ∂
∂ϑi

µ

∂
∂xµ .
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• harmonic if it is closed and coclosed.

The components of a multiform span an irreducible GL(n)-module described by a rectangular Young
diagram made of s columns and n

2 + 1 rows iff it is annihilated by the operators θµ
i

∂
∂θµ

j
− δj

i
n
2 that

span the algebra gl(s). Moreover, it is further irreducible under O(n − 1, 1) iff it is also annihilated
by the operators θµ

i θj
µ and ∂

∂θµ
i

∂

∂θj
µ

which, together with the previous ones, span the algebra o(2s).

Poincaré covariant equations for singletons [21]: The spin-s singleton io(n − 1, 1)-module can
be realized as a space of multiforms ψ(x, θ) on the Minkoswki spacetime Rn−1,1 which are harmonic
and whose components span an irreducible o(n− 1, 1)-module D[s],...,[s] labeled by a rectangular Young
diagram made of [s] columns and n

2 rows.
Remark: The multiform associated with a singleton of spin s > 1 is physically interpreted as its

fieldstrength (or curvature tensor). An irreducible O(n − 1, 1)-module labeled by a rectangular
Young diagram made of [s] columns and n

2 rows decomposes a sum of two irreducible o(n − 1, 1)-
modules when n/2 is odd. This subtlety is related to the involutive property of the Hodge operator.
In order to treat both cases uniformly, one should consider the complexification of the O(n − 1, 1)-
module when n/2 is even. Then both modules are eigenspaces (of eigenvalue ±1) of the involutive
Hodge duality, with a factor i included when n/2 is even (see e.g. the article [23] containing a concise
introduction to the s = 1 case).

So the singleton modules of spin s > 1 are either said to be duality-symmetric when n/2 is even
or chiral when n/2 is odd. This duality properties extend to constantly curved spacetimes, therefore
the singletons of spin s > 1 are those finite-component unitary irreducible representations of one of
the isometry algebras io(n − 1, 1), o(n, 1) or o(n − 1, 2) which are either duality-symmetric or chiral.
This deep connection between conformal symmetry and electric-magnetic duality somehow explains
the appearance of singletons in many celebrated models of high-energy theoretical physics, such as
maximally supersymmetric theories.

3.5 Singletons as fields on the ambient space

The main drawback of the description of singletons as fields on the conformal boundary (presented
in the previous subsection) is that the conformal symmetry is not manifest (dilatation symmetry is
obvious but not the special conformal and inversion symmetries). To circumvent this defect, one may
describe singletons as fields on the ambient space.

Such a description was initiated by Dirac in [3] and can be summarized for the scalar singleton
as follows (see e.g. the section 3 of [24] for a review of this elegant construction): On the one hand,
any space of functions of the inhomogeneous coordinates on RPn+1 can be realized in terms of the
homogeneous coordinates as a space of homogeneous functions on Rn+2 of some fixed degree. On the
other hand, any space of functions on the null cone can be realized as a space of equivalence classes of
functions on the ambient space modulo the functions which vanish on the null cone. The homogeneity
degree is fixed by the requirement that the Laplace-Beltrami operator on the ambient space Rn,2

preserves the latter equivalence relation, so that this operator induces the conformal Laplacian on the
conformal boundary ∂AdSn+1.

Ambient construction of the scalar singleton (Dirac, 1936): The scalar singleton o(n, 2)-
module can be realized as a space of functions Φ(X) on the ambient space Rn,2 which are

• harmonic: ¤Rn,2 Φ(X) = 0

• of homogeneity degree 1− n
2 : (XA∂A + n

2 − 1)Φ(X) = 0

• quotiented by the equivalence relation

Φ(X) ∼ Φ(X) + (XAXA) Ξ(X)

where Ξ(X) is of homogeneity degree −1− n
2 .
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Remark: The operators ¤ , X · ∂X + n+2
2 , X2 are called (first class) constraints and they span

the symplectic algebra sp(2). This property will be made manifest via Howe duality. These first-class
constraints find a natural interpretation in the “two-time physics” research programme of Bars (see
e.g. [25]). Actually, all constraints can equivalently be imposed on the physical states.

Ambient construction of the scalar singleton: The scalar singleton module can be realized as a
space of distributions

Ψ(X) := δ(X2)Φ(X)

on ambient space Rn,2 which are

• harmonic: ¤Ψ(X) = 0

• of homogeneity degree −1− n
2 : (X · ∂ + n+2

2 )Ψ(X) = 0

• annihilated by the quadratic form: X2 Ψ(X) = 0

The generalization of this construction to any spin [28] can be performed in the language of
multiform. Let ϑA

i be a set (where i = 1, 2, . . . , s− 1, s) of fermionic coordinates

ϑA
i ϑB

j + ϑB
j ϑA

i = 0 ,

on Π(Rn,2 ⊗ Rs).

Definitions:An ambient multiform is

• a multiform on the ambient space Rn,2, i.e. a function Ψ(XA, ϑB
i ) on the superspace Rn,2 ⊕

Π(Rn,2 ⊗ Rs).

• tangent to the anti de Sitter spacetime AdSn+1 if it is annihilated by all operators XA ∂
∂ϑA

i
.

• tangent to the conformal boundary (∂AdS)n if it is annihilated by all operators XA ∂
∂ϑA

i

and ∂
∂XA

∂
∂ϑi

A
.

The definitions of (co)closure and harmonicity for ambient multiforms are the analogues of the ones
for spacetime multiforms.

Ambient construction (Arvidsson & Marnelius, 2006): The tensorial singleton o(n, 2)-module
can be realized as a space of multiforms Ψ(X,ϑ) on the ambient space Rn,2

• which are

– harmonic
– of homogeneity degree −1− n

2

– annihilated by X2

– tangent to the conformal boundary

• whose components span an irreducible o(n, 2)-module described by a rectangular Young diagram
made of s columns and n

2 + 1 rows.

This formulation is appealing because conformal symmetry is manifest, unfortunately the price to
pay is that locality is not manifest any more. However, there exists a formulation [26] where both
conformal invariance and locality are manifest. This is made possible by an ambient space construction
in the fiber rather than in the spacetime, along the lines of the parent approach [27].
Remark: The various operators ¤ , X ·∂X+ n+2

2 , X2, ∂
∂X ·ϑi, ∂

∂X · ∂
∂ϑi

, X · ∂
∂ϑi

, ∂
∂X · ∂

∂ϑi
. ϑi· ∂

∂ϑj
− δj

i
d+2
2 ,

ϑi · ϑj , and ∂
∂ϑi

· ∂
∂ϑj

which annihilate the module span the orthosymplectic superalgebra osp(2s|2)
of constraints. This superalgebra finds a natural interpretation, on the mathematical side, in terms
of Howe duality, and, on the physical side, in terms of the o(2s) extended supersymmetric spinning
particle (see e.g. [28, 29] and refs therein).
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3.6 Singletons as kernels of
the Howe dual algebra

An important message is that the orthosymplectic osp(2s|2) (super)algebra of constraints annihilating
the spin-s singleton module is the Howe dual of the conformal algebra o(n, 2) acting on the singleton
irreducible module. For a concrete description of Howe duality, one may look e.g. at the the section
3 of the review [30]. For the sake of simplicity, let us turn back to the scalar singleton.

Let T ∗Rn,2 be the (trivial) cotangent bundle of the ambient space with canonical

• Darboux coordinates Y A
α = (XA, PA) (where α = 1, 2)

• Poisson bracket
{Y A

α , Y B
β } = εαβ ηAB ⇐⇒ {XA, PB} = δA

B

where εαβ is the symplectic form of sp(2). The Weyl algebra An+2 is the algebra of (polynomial)
differential operators O(X,P) on the ambient space Rn,2, where PA = − i ∂/∂XA. The Weyl algebra
is isomorphic to the space of Weyl symbols O(X, P ), i.e. (polynomial) functions on the cotangent
bundle T ∗Rn,2, endowed with the Moyal star product ∗ = exp i{ , }.

On the one hand, the algebra o(n, 2) = span{LAB} is linearly realized on Rn,2 via the generators
LAB = XAPB −XBPA whose Weyl symbols are the bilinears

LAB = εαβY A
α Y B

β = XAPB −XBPA

On the other hand, the Lie algebra
sp(2) = span{uαβ}

can be presented

• by its generators uαβ = uβα (where α, β = 1, 2)

• modulo the commutation relations

[uαβ ,uγδ] = i εβγuαδ + symmetrizations .

The Weyl symbols of the operators ¤ , X · ∂X + n+2
2 , X2 are the bilinears

Uαβ = ηABY A
α Y B

β

In both cases, the Weyl commutators (or Poisson brackets) of generators reproduce the corresponding
commutation relations. These respective realizations of o(n, 2) and sp(2) are maximal commutants in
the algebra of quadratic Weyl symbols: they form a Howe dual pair.

Ambient construction of the scalar singleton: The scalar singleton o(n, 2)-module is a space of
distributions Ψ(X) on the ambient space Rn,2 which are annihilated by the sp(2) algebra, Howe dual
to o(n, 2) in the algebra of linear operators on Rn,2:

uαβΨ(X) = 0

The generalization to any integer spin s ∈ N is analogous [26]: The Grassmann even indices A,B
will still correspond to the (n + 2)-dimensional ambient space Rn,2 with metric ηAB but the letters
α, β will now be superindices corresponding to a (2|2s)-dimensional symplectic superspace

T ∗R1|s ∼= R2|2s

with symplectic form Jαβ . The symplectic form on the superspace R2|2s can be seen as a metric form
on the superspace R2s|2 ∼= Π(R2|2s) with opposite Grassmann parity. Therefore, the symplectic form
Jαβ is manifestly preserved by the orthosymplectic algebra osp (2s | 2). The multiforms are functions
on the superspace

Rn,2 ⊕ Π(Rn,2 ⊗ Rs) ∼= Rn+2 | s(n+2)

with
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• n + 2 even coordinates XA on Rn,2

• s(n + 2) odd coordinates ϑA
i on Π(Rn,2 ⊗ Rs).

Let (PA|πi
B) be the conjugates of the supercoordinates (XA|θB

i ). The phase (super)space coordinates
on the cotangent bundle T ∗Rn+2|s(n+2) are collectively denoted by

ZA
α := (XA, PB|θA

i , πj
B)

where the superindex α takes 2+2s values. The graded Poisson bracket originating from the symplectic
structure on the phase superspace is

{ZA
α , ZB

β } = ηABJαβ

⇐⇒ {XA, PB} = −{PB, XA} = δA
B , {θA

i , πj
B} = {πj

B, θA
i } = δA

Bδi
j .

The phase space coordinates ZA
α are natural coordinates on the tensor product Rn,2 ⊗ R2|2s. The

algebra o(n, 2) is linearly realized on Rn,2 ⊕ Π(Rn,2 ⊗ Rs) as

JAB = XAPB −XBPA − i ϑA
i

∂

∂ϑi
B

+ i ϑB
i

∂

∂ϑi
A

The Weyl symbols of these generators of the algebra o(n, 2) are the bilinears

JAB = J αβZA
α ZB

β

The Lie superalgebra
osp(2s|2) = span{tαβ}

can be presented

• by its generators tαβ = tβα (where α, β = 1, 2)

• modulo the graded commutation relations

[tαβ ,tγδ] = iJβγtαδ + (anti)symmetrizations .

The Weyl symbols of the operators ¤ , X · ∂X + n+2
2 , X2, ∂

∂X · ϑi, ∂
∂X · ∂

∂ϑi
, X · ∂

∂ϑi
, ∂

∂X · ∂
∂ϑi

.
ϑi · ∂

∂ϑj
− δj

i
d+2
2 , ϑi · ϑj , and ∂

∂ϑi
· ∂

∂ϑj
are the bilinears

Tαβ = ηABZA
α ZB

β

The Weyl graded commutators (or graded Poisson brackets) of generators reproduce the correspond-
ing graded commutation relations. The respective realizations of o(n, 2) and osp(2s|2) are maximal
commutants in the algebra of quadratic Weyl symbols: they form a Howe dual pair.

Ambient construction of tensorial singletons [26]: The spin s ∈ N singleton module D(s + n
2 −

1 ; s, . . . , s) can be realized as a space of distributions on the superspace Rn,2 ⊕ Π(Rn,2⊗Rs) which are
annihilated by the osp(2s|2) superalgebra, which is Howe dual to o(n, 2) in the superalgebra of linear
operators on Rn,2 ⊕ Π(Rn,2 ⊗ Rs).
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