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Abstract

In this I present evidence that the most general d = 4, N = 2 compactifications of heterotic
string with fluxes is dual to M or F-theory compactifications on manifolds with SU(3) structure.

1 Introduction

String theory is one of the most important candidates to a quantum theory of gravity. It also naturally
includes gauge interactions and therefore it is a candidate for a unified theory of gravity and particle
physics. If this is so, it should be possible to determine the known physics (the Standard Model of
Particle Physics) from string theory. Even though at high energies, string theory is very constrained
(and predictive) we still do not understand how to extract information of phenomena which take place
at much lower energy scales, like, standard model physics.

The general lore is that superstring theory predicts the number of the space-time dimensions to
be ten. However, caution has to be taken here when interpreting the theory in this way. String theory
is in principle a two-dimensional (super)conformal field theory and considering that the target space
is indeed “our” space-time can be misleading. One of the most known examples is string theory on
orbifolds which is perfectly well defined. However, orbifolds, from a naive geometric perspective do
not make much sense.

I will nevertheless consider in the following that string theory is defined on a ten-dimensional
space-time, but we shall see towards the end of this talk that non-geometric backgrounds naturally
appear also in this setup. I shall work in the low energy approximation of string theory which is
ten-dimensional supergravity.

In order to extract some low-energy behavior one needs to compactify, ie to consider that the space-
time is a product of a four-dimensional space-time times some internal (six-dimensional) manifold.
Upon compactification, the various string theories we know of are related by certain duality relations.
The duality I will be interested in the following is the so called heterotic-type IIA duality. This duality
states that heterotic string compactified on K3 × T 2 is dual to type IIA strings compactified on K3
fibered Calabi–Yau manifolds.

Besides dualities, in this talk I will need another important ingredient, which is termed flux com-
pactification. The usual compactifications suffer from the moduli problem in that after the compact-
ification there exist plenty scalar fields without a potential (moduli). These moduli fields, if unfixed
ruin all the predictive power of string theory. Therefore one has to find a mechanism of stabilising such
fields. One such method is precisely flux compactification. In such compactifications, non-vanishing
values for the field strengths of various fields on the internal manifold are considered

∫

γp

Fp = integer 6= 0 . (1.1)
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Here Fp is the p-form field strength off some p − 1 gauge potential and γp denotes some appropriate
p-cycle in the internal manifold. After the compactification, the fluxes generate potential and masses
for various moduli fields. Understanding how fluxes change the original compactification is not often
easy. A whole lot can be learned about how fluxes work and many new fluxes have been discovered
by applying duality relations to certain flux backgrounds. This is precisely what I will show in this
talk in the context of heterotic-type IIA duality in four dimensions.

2 Heterotic compactifications on K3× T 2

Heterotic compactifications are in general complicated due to the presence of non-Abelian gauge fields
in ten dimensions, but for the discussion which follows I shall ignore this and work directly with the
U(1)16 Cartan subalgebra of the original gauge group. This choice can be motivated by the fact that
at a generic point in the moduli space of the resulting N = 2 theory in four dimensions the gauge
group is broken to the maximal Abelian subgroup, U(1)nv+1, where nv denotes the number of vector
multiplets in four dimensions. Part of these gauge fields come directly form the Cartan subalgebra of
the original gauge group1 while four of the gauge fields come from the Kaluza-Klein vectors on the
torus as well as from from the B-field with one leg on the torus. Roughly I will use the following
assignment

A0 = gµ4 , A1 = Bµ4 , A2 = gµ5 , A3 = Bµ5 ,

where by 4 and 5 I denote the directions along the T 2 torus. The resulting theory also contains a certain
number of hyper-multiplets, but in the following I will only concentrate on the vector multiplets and
the way they couple to the N = 2 supergravity. The important thing to note is that vector multiplet
sector is governed by the T 2 compactification and the K3 part is more like a spectator. For this reason
I shall not discuss any detail of the K3 compactification and assume that it works as usual.

2.1 Turning on fluxes on T 2

In order to have a clearer picture of what will follow it is important to understand the heterotic-type
IIA duality when gauge field fluxes are turned on T 2. This was studied in [1]. The fluxes on T 2 can
be parameterised as ∫

T 2

F a = fa , (2.1)

where F a denote the field strengths for the gauge fields in the Cartan subalgebra of the original gauge
group and fa denote the flux parameters, which, up to some normalization, are integer numbers. The
effective action generated by this compactification was derived in [2, 3]. One feature that I will be
mostly interested in the following is the fact that the gauge group becomes non-Abelian due to the
fluxes and the structure constants are given precisely by the flux parameters fa. In particular one
finds the following field strengths

F 0 = dA0 , F 2 = dA2 ,

F 1 = dA1 + faAa ∧A2 , F 3 = dA3 − faAa ∧A0 , F a = dAa + faA0 ∧A2 ,

from where the non-vanishing structure constants can be read off

f1
2a = fa ; F 3

0a = −fa ; fa
02 = −fa . (2.2)

1Note that compactification of heterotic strings on curved backgrounds require that the gauge fields are non-trivial
on the internal space. This in turn leads to a breakdown of the original gauge group. The precise resulting gauge group
can only be determined once the form of the gauge bundle is known. For the case at hand I shall not be interested in
these aspects as I will only consider the Cartan subalgebra. However the gauge bundle in general breaks also some of
the Cartan generators and therefore the precise number of U(1) gauge fields in four dimensions is left arbitrary.
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2.2 Type IIA dual setup

Now if heterotic type IIA duality is indeed true, what would be the type IIA dual setup which would
produce a theory similar to what I presented above on the heterotic side? In particular how can one
obtain a non-Abelian gauge symmetry and charged vector multiplets in the context of Calabi–Yau
compactification of type IIA theory? The answer to these questions turns out not to be within type
IIA theory but in its strong coupling limit, M-theory. The key to this puzzle is the following. The
four-dimensional duality I am interested in, has a correspondent in five dimensions which says that
heterotic strings compactified on K3×S1

5 is dual to M-theory compactifications on K3 fibered Calabi–
Yau manifolds. Clearly, by compactifying on another circle – which I denote by S1

4 – to four dimensions
we recover the duality I started with. In this picture, the T 2 fluxes I turned on in the heterotic side
appear only in the last step of the compactification from five to four dimensions as monodromies of
the gauge field-scalars (scalar fields which come from the ten-dimensional gauge fields in the direction
of S1) around the S1

4 circle. This should be clear from the fact that a constant field strength F45 = k,
which defines a flux through T 2 = S1

5 ×S1
4 , can be obtained from a gauge potential A5 which is linear

in the coordinate if the coordinate z4 of the circle S1
4 , ie, A9 ∼ k · z4. This means that after going once

completely around the circle, the gauge potential A9 has a jump by 2πk. Such shifts are symmetries
of the theory and therefore compactification with such monodromies are consistent.

What I propose in the following is to do the same thing in M-theory. From the five-dimensional
point of view, A9 is a scalar field which sits in a vector multiplet. Therefore I will have to perform a
compactification of the five-dimensional theory (which was obtained by compactifying M-theory on a
Calabi–Yau manifold) on a circle to four dimensions with monodromies for the scalars in the vector
multiplets. For Calabi–Yau manifolds which are K3 fibered, the isometry group of the vector moduli
space in five dimensions is SO(1, 1) × SO(1, nv − 2). In principle only the subgroup corresponding
to the shift symmetries discussed above should be taken into account to give the dual setup to the
heterotic fluxes, but I propose to do something more general and allow monodromies which take values
in the full isometry group.

Finally I want to give up this step-by-step procedure and package all the information together in
a single step compactification of M-theory. For this I should mention that the scalars in the vector
multiplet sector in five dimensions come from the Kähler moduli of the Calabi–Yau manifold. These
scalar fields are supposed to vary along the circle and therefore the metric on the Calabi–Yau manifold
depends on the point on the circle. This means that the full seven dimensional manifold is not simply a
direct product between the Calabi–Yau manifold and the circle, but a fibration where the Calabi–Yau
manifold is allowed to vary along the circle. Generically such manifold will be a manifold with SU(3)
structure [1, 4].

There is an equivalent way of dealing with this problem which can be made more concrete. The
Kähler moduli of the Calabi–Yau manifold are in one-to-one correspondence with the harmonic (1, 1)
forms. Therefore, saying that the moduli vary over the circle is equivalent to saying that the harmonic
forms of the Calabi–Yau manifold have a specific dependence on the circle coordinate. In particular I
will choose

ωi(z + ε) = ωi(z) + εM j
i ωj(z) , (2.3)

where M is the constant twist matrix and the monodromy matrix γj
i = (eM )j

i is an element of the
symmetry group of the vector moduli space as explained above. Even if the forms ωi are harmonic on
the Calabi–Yau slices, on the full seven dimensional manifold they obey the relation

dωi = M j
i ωj ∧ dz . (2.4)

Such a relation imposes certain constraints on the manifold. In particular,
∫

X7

d(ωi ∧ ωj ∧ ωk) = 0 , (2.5)

implies that the triple intersection numbers of the Calabi–Yau manifold

Kijk =
∫

CY
ωi ∧ ωj ∧ ωk , (2.6)
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obey the relation
KijkM

l
k +KjklM

l
i +KkilM

l
j = 0 . (2.7)

This condition is precisely the condition that the Kähler moduli space of the Calabi–Yau manifold
has an isometry. For the case I am interested in – namely a K3 fibered Calabi–Yau manifold – there
is an isometry and therefore this condition must have some non-trivial solution. It is known that the
intersection numbers for such manifolds are given by

K123 = −1 , K1ab = 2δab , a, b = 4, . . . , h1,1 = nv . (2.8)

This can be insert in the constraint (2.7) to obtain a solution for the twist matrix M . The result can
be parameterised as2

M2
2 = m , M2

a = ma , M3
a = m̃a , M b

a = −Ma
b = mb

a ,

M3
3 = −m , Ma

2 = 1
2m̃a , Ma

3 = 1
2ma , (2.9)

Compactification of M-theory on the seven-dimensional manifolds described above leads to N = 2
supergravity in four dimensions coupled to a non-Abelian vector multiplet sector where the non-
vanishing structure constants are given in terms of the twist matrix M as [5]

f j
i0 = −M j

i , f1
23 = −m , f1

2a = m̃a , f1
3a = ma , f1

ab = 2ma
b . (2.10)

Allowing only m̃a to be non-vanishing in the twist matrix M it can be seen that precisely reproduces
the situation which was found in heterotic compactifications [1].

It is now intriguing that on the type IIA (M-theory) side there are more fluxes than I originally
started with in the heterotic case, namely m, ma and ma

b. So the question to ask now is whether these
additional flux parameters have any interpretation on the heterotic side. At a first sight, ma are T-dual
to the parameters m̃a and therefore one should expect that these parameters somehow correspond to
fluxes for the T-dual fields in the heterotic picture. But is this a meaningful compactification? And
moreover, what is the dual of the other parameters like m and ma

b? I will answer these questions in
the next subsection.

2.3 Heterotic compactifications with double duality twists

The idea of the compactifications I want to discuss now comes from the double torus compactifications
proposed in [6]. The main message is that in such compactifications the T-duality symmetry is made
manifest. To be short, for the case at hand it means that I can split the T 2 compactification into two
circle compactification. After the compactification on the first circle, the T-duality symmetry group
is SO(1, nv − 2) and it can be used in order to twist the compactification on the second circle. The
twist matrix as spelled out in [7] takes the form

NI
J =




f 0 M b

0 −f W b

−Wa −Ma Sa
b .




In such compactifications it is argued that the resulting vector multiplet sector is non-Abelian with
structure constants

fP
0N = NN

P f1
NP = NNP , N, P = 2, 3, . . . , nv , (2.11)

where the indices of the twist matrix (and structure constants as well) are raised and lowered with
the O(1, nv − 2) invariant

L =




0 1 0
1 0 0
0 0 1nv−3


 . (2.12)

2The case when M2
2 + M3

3 6= 0 is more subtle and I will not discuss it here. Therefore note that I have already set
M2

2 + M3
3 = 0.
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The above structure constants suggest that we should perform the following identifications in order
to match the heterotic and M-theory sides

f = m , W a = 1√
2
ma , Ma = − 1√

2
m̃a , Sab = mab . (2.13)

This assignment can be indeed verified to be correct also at the level of the gaugings and of the
potential which are generated.

2.4 Generalization: R-fluxes and F-theory

The setup which I described above admits a certain generalization which I will shortly discuss in the
following. One can think of using the full T-duality group, SO(2, nv − 1), in the twisted compact-
ification although this symmetry is not present at the starting point of the compactification. Such
deformations of the compactification manifold were termed in the literature as R-fluxes and they do
not have a geometric description, not even locally. Formally it means to introduce a second twist
matrix [7, 8]

ÑI
J =




q 0 P b

0 −q V b

−Va −Pa S̃a
b


 , (2.14)

which commutes with the original one. The additional structure constants which are generated in this
way have the form

fP
1N = ÑN

P , f0
NP = ÑNP . (2.15)

The natural thing to ask now is whether this setup has any sort of type IIA dual. Recall that before,
I needed to go M-theory because I needed the M-theory circle in order to twist the compactification
around it. Now in order to implement a second twist matrix I would need another circle on the type
IIA/M-theory side. This naturally takes us to F-theory compactified to six dimensions on Calabi–
Yau manifolds and then further down to four dimensions on a T 2 with duality twists. Packaging
things together as I did in the M-theory case, the setup to consider is F-theory compactifications on
eight-dimensional manifolds with SU(3) structure. Now (2.4) is generalized to

dωi = M j
i ωj ∧ dz1 + M̃ j

i ωj ∧ dz2 , (2.16)

where z1,2 denote the two directions of the torus, while M̃ is the second twist matrix. The constraint
(2.7) has to be satisfied for both matrices M and M̃ and moreover these matrices have to commute
in order that the exterior derivative is nilpotent.

3 Conclusions

In this talk I have presented the aspects which appear in heterotic type IIA duality when fluxes which
gauge isometries in the vector multiplet sector are involved. I showed that by firs considering gauge
field fluxes on the torus on the heterotic side, one is lead to the most general picture, that heterotic
compactifications with R-fluxes is dual to F-theory compactifications on eight-dimensional manifolds
with SU(3) structure. One of the main messages that I wanted to convey is that non-geometric fluxes in
the heterotic picture have a geometric correspondent within M- or even F-theory. The other important
thing to realize is that by carefully considering duality aspects within supergravity compactifications
one can get information about stringy effects of these setups.
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