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Abstract

Higher order symmetries in a covariant Hamiltonian framework are investigated. Some nontriv-
ial examples on a three-dimensional space involving Killing tensors of rank 2 are presented. We
analyze the possibility for a higher order symmetry to survive when the electromagnetic interactions
are taken into account. A concrete realization of this possibility is given by the Killing-Maxwell
system.

1 Introduction

The evolution of a dynamical system is described in the phase-space and from this point of view it is
natural to go in search of conserved quantities associated with geometrical symmetries of the complete
phase-space, not just the configuration one. Such symmetries are related to higher rank symmetric
Stackel-Killing (SK) tensors which generalize the Killing vectors. These higher order symmetries
are known as hidden symmetries and the corresponding conserved quantities are quadratic, or, more
general, polynomial in momenta. Also Killing tensors play a fundamental role in the Hamilton-Jacobi
theory of separation of variables and the integrability of finite-dimensional Hamiltonian systems [1].
Another natural generalization of the Killing vectors is represented by the antisymmetric Killing-Yano
(KY) tensors [2] which in many aspects are more important than the KS tensors.

In the study of motion of charged particles in external gauge fields it has been proved that a gauge
covariant Hamiltonian framework [3] is more appropriate. We illustrate the general considerations by
some simple but nontrivial examples on a three-dimensional Euclidean space [4].

The covariant approach is also useful to investigate the possibility for a higher order symmetry to
survive when the electromagnetic interactions are taken into account. A concrete realization of this
possibility is given by the Killing-Maxwell (KM) system [5].

The plan of the paper is as follows. In Section 2 we establish the generalized Killing equations in
a covariant framework including external gauge fields and scalar potentials. In Section 3 we exemplify
the gauge covariant approach with some nontrivial examples connected with the Kepler/Coulomb
potential. In Section 4 we discuss the special role of the KY tensors in generating higher order
symmetries and in the next Section we describe the KM system. Finally, the last Section is devoted
to conclusions.

2 Symmetries and conserved quantities

Let (M, g) be a n-dimensional manifold equipped with a (pseudo-)Riemmanian metric g and denote

by
1 ..
H = 59”191-19]‘, (1)

the Hamilton function describing the geodesic motion in a curved space-time.
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Let us consider a conserved quantity of motion expanded as a power series in momenta:

p
1 .
K =Ko+ K" @)piy =iy (2)
k=1

It has vanishing Poisson bracket with the Hamiltonian, {K, H} = 0, which implies
K Ginisi) 0, (3)

where a semicolon denotes the covariant differentiation corresponding to the Levi-Civita connection
and round brackets denote full symmetrization over the indices enclosed. A symmetric tensor K
satisfying (3) is called a SK tensor of rank k. The SK tensors represent a generalization of the Killing
vectors and are responsible for the hidden symmetries of the motions, connected with conserved
quantities of the form (2) polynomials in momenta. Indeed, using equation (3), for any geodesic ~y
with tangent vector &' = p’
Qr = Kiyojp @ - 2% (4)
is constant along ~.
The traditional procedure to deal with the coupling to a gauge field Fj; expressed (locally) in terms
of the potential 1-form A;
F=dA, (5)

is to replace the Hamiltonian by

1

H= 59”(1% — Ai)(pj — 45), (6)

work with the standard Poisson bracket and consider the polynomials (2) in the variables (p; — A;)
fori=1,--- ,n.

The disadvantage of this approach is that the canonical momenta p; and implicitly the Hamilton
equations of motion are not manifestly gauge covariant. This drawback can be removed using van
Holten’s receipt [3] by introducing the gauge invariant momenta:

I; =pi — Ai. (7)

The Hamiltonian (6) becomes
H= %gijninj +V (), (8)
where for completeness we included a scalar potential V' (z). The equations of motion are derived

using the Poisson bracket

oP 0Q 0P 0Q 7 oP 0Q

PO} =25 4 qF, 9%
WPQr =50 om, ~ ot oo 45 o, o, ©

In consequence the fundamental Poisson brackets are
{l’i,wj} :()7 {.%'i,Hj} 2(5;, {Hi,H]‘} ZFZ']', (10)

showing that the momenta II; are not canonical.
Searching for conserved quantities (2) expanded rather into powers of the gauge invariant momenta
II; we get the following series of constraints

K'V; =0, (11a)
Ky' + F'K1 = KV, (11b)
K(Z1'“Zl;ll+1) F‘(Zl-&-lKu“'lz)J — Kaidys
+ j (l i 1) )]
for I=1,---(p—2), (11c)
Krivitn) | p (e prin-—ip-1)i — ) (11d)
K ipiip1) — (11e)
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Examining the above hierarchy of constraints some remarks are in order. First of all, the last
equations is satisfied by a SK tensor (3), while the rest of the equations mixes up the terms of K with
the gauge field strength Fj;. Also it is worth mentioning that equations (11) separate into two groups:
one involves the terms of K of odd degree in the momenta II; and the other involves only terms of K
of even degree in the momenta [6].

Several applications using van Holten’s covariant framework [3] are given in [4, 7, 8, 9].

3 Explicit examples

Let us illustrate these general considerations by some nontrivial examples. In what follows we consider
M to be a 3-dimensional Euclidean space E? and in these circumstances in this Section we get rid
of a difference between covariant and contravariant indices. The Coulomb potential will be the basis
of our examples superposing different types of electric and magnetic fields. The hidden symmetries
which will be found involve SK tensors of rank 2 looking for constants of motion of the form

1
K = Ko+ KTl + S KT (12)

3.1 Coulomb potential

To put in a concrete form, we consider the Hamiltonian for the motion of a point charge ¢ of mass M
in the Coulomb potential produced by a charge @
M
AHZA—ﬁ+qQ.
2 r
We start with (11e) for p = 2 which is satisfied by a SK tensor of rank 2. For the Coulomb problem
it proved that the following form of the SK tensor is adequate [10]:

(13)

Kij =26mn - — (nyr; + njng), (14)

written in spherical coordinates with n an arbitrary constant vector.
Corresponding to this SK tensor the non relativistic Coulomb problem admits the Runge-Lenz

vector constant of motion .
K=II xL+ MqQ-, (15)
r

where
L=rxII, (16)

is the angular momentum.

3.2 Constant electric field

The next more involved example consists of an electric charge ¢ moving in the Coulomb potential in
the presence of a constant electric field E. The corresponding Hamiltonian is:
1 Q
H=—I’4+¢< —¢E-r 17
syt —dE-r, (17)
with II = M7t in spherical coordinates of E3.
Again it is adequate to take for the SK tensor of rank 2 the simple form (14) choosing n = E.
Using this form for K;; after a straightforward calculation

MqQE.r_?E-[rx(er)]. (18)

Ky =
r

Concerning equation (11a), it is automatically satisfied by a vector K of the form

K=rxE, (19)
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modulo an arbitrary constant factor. This vector K contribute to a conserved quantity with a term
proportional to the angular momentum L along the direction of the electric field E.

In conclusion, when a uniform constant electric field is present, the Coulomb system admits two
constants of motion L - E and C - E where C is a generalization of the Runge-Lenz vector (15):

C:K—%rx(er). (20)
3.3 Spherically symmetric magnetic field

Another configuration which admits a hidden symmetry is the superposition of an external spherically
symmetric magnetic field

B = f(r)r, (21)
over the Coulomb potential acting on a electric charge q. This configuration is quite similar to the

Dirac charge-monopole system.
For K;; we use again the form (14) and Fj; in this case is

Fij = €ijiBr = eijrri f(r) - (22)
The system of constraint (11) can be solely solved only for a definite form of the function f(r)
_ 9
f(r) - 7'5/2 ) (23)

with g a constant connected with the strength of the magnetic field.
With this special form of the function f(r) we get

2 2
Ko - [M"Q - 2”] (n-r), (24)
T T
and 5
94

Collecting the terms Ky, K;, K;; the constant of motion (12) becomes

B 29q 2 ol

with n an arbitrary constant unit vector and K,L given by (15), (16) respectively. The angular
momentum L [3] is not separately conserved, entering the constant of motion (26).

3.4 Magnetic field along a fixed direction

The last example consists in a magnetic field directed along a fixed unit vector n
B =B(r-n)n, (27)

where, for the beginning, B(r - n) is an arbitrary function.
Again we are looking for a constant of motion of the form (12) with the SK tensor of rank 2 (14).
Equations (11) prove to be solvable only for a particular form of the magnetic field

(0%

with a and § two arbitrary constants.
Consequently we get for Ky and K;

Ky = MqQ (r-n) + ag¢®(r x n)?, (29)

,
K; = —2¢qy/ar-n+((rxn);. (30)
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The final form of the conserved quantity in this case is:

K:n-[K+2q\/ar-n+ﬁ L}+aq2(rxn)2. (31)

As in the previous example the angular momentum L is forming part of the constant of motion K
(31).

4 Killing-Yano tensors

KY tensors are a different generalization of Killing vectors which can be studied on a manifold.
They were introduced by Yano [2] from a purely mathematical perspective and later on it turned out
they have many interesting properties relevant to physics. The existence of higher rank KY tensors
indicated the presence of dynamical symmetries which are not isometries. Here we shall point out
the role of KY tensors in construction of conserved quantities paying a special attention to the KM
system introduced by Carter [5].

A KY tensor is a p-form Y (p < n) which satisfies

1
Y=——X_1dY 2
Vx P 1dY, (32)

for any vector field X, where ’hook’ operator _I is dual to the wedge product. This definition is
equivalent with the property that V;Y;,..;, is totally antisymmetric or, in components,

Y 0. (33)

1-ip—1(ip3f) =
The first connection with the symmetry properties of the geodesic motions is the observation that
along every geodesic v in M, Y;,..;,_,; 27 is parallel.
These two generalizations SK and KY of the Killing vectors could be related. Let Y;
tensor, then the symmetric tensor field

be a KY

1+p

K;: = }/iizmipy} iz--.ip’ (34)

is a SK tensor and it sometimes refers to this SK tensor as the associated tensor with Yj,..; . However,
the converse statement is not true in general: not all SK tensors of rank 2 are associated with a KY
tensor.

Having in mind the special role of null geodesic for the motion of massless particles, it is convenient
to look for conformal generalization of KY tensor. Let us mention also that recently a lot of interest
focuses on higher dimensional black holes. It was demonstrated the remarkable role of the conformal
Killing-Yano (CKY) tensors in the study of the properties of such black holes (see e. g. [11, 12, 13]
and the cites contained therein).

A CKY tensor of rank p is a p-form which satisfies

ViV = — X dy — —_x" A dry, (35)
p+1 n—p+1
where X” denotes the 1-form dual with respect to the metric to the vector field X and d* is the
exterior co-derivative. Let us recall that the Hodge dual maps the space of p-forms into the space of
(n — p)-forms. The square of * on a p-form Y is either +1 or —1 depending on n,p and the signature
of the metric [14, 15]

s xY =Y | #'Y =¢*Y, (36)
with the number ¢,
detg
= (=1)P 571 . 37
EP ( ) * \detg] ( )

With this convention, the exterior co-derivative can be written in terms of d and the Hodge star:

'Y = (=1« 1dxY. (38)
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Comparing definitions (32) and (35) we remark that all K'Y tensors are co-closed but not necessarily
closed. From this point of view CKY tensors represent a generalization more symmetric in the pair
of notions. CKY equation (35) is invariant under Hodge duality that if a p-form Y satisfies it, then
so does the (n — p)-form *Y. Moreover the dual of a CKY tensor is a KY tensor if and only if it is
closed.

There is also a conformal generalization of the SK tensors, namely a symmetric tensor K;
is called a conformal Killing (CSK) tensor if it obeys the equation

1ip =

Kiyiy)

Kiyipig) = 95(i Kig-ip) » (39)

where the tensor K is determined by tracing the both sides of equation (39). Let us note that in the

case of CSK tensors, the quantity (4) is constant only for null geodesics . There is also a similar
relation between CKY and CSK tensors as in equation (34).

For what follows it is necessary to mention an interesting construction involving CKY tensors of

rank 2 in 4 dimensions. Let us consider equation (35) for this particular case:

1
Yigiw) = 3 (gjkyli;z + gi(kY})l ;l> ) (40)
and let us denote
Y=Y (41)
The trace in 75 in equation (40) leads to the following result [16]:
3 l
Yy = 58aY)) (42)

It is obvious that in a Ricci flat space (R;; = 0) or in an Einstein space (R;; ~ g¢ij), Yi is a Killing
vector and we shall refer to it as the primary Killing vector. In Carter’s construction [5] of a primary
Killing vector it is used a CKY tensor which in turn is the dual of an ordinary KY tensor.

5 KM system

Returning to the system of equations (11) we should like to find the conditions of the electromagnetic
tensor field Fj; to maintain the hidden symmetry of the system. More precisely, we are looking

for favorable conditions under which the terms F| (i jgir=i-1)i do not contribute to equations (11)
regulating the conserved quantities. To make things more specific, let us assume that the system
admits a hidden symmetry encapsulated in a SK tensor of rank 2, K;; associated with a KY tensor
Yi; according to (34). The sufficient condition of the electromagnetic field to preserve the hidden
symmetry is [4]

FY b =0. (43)
where the indices in square bracket are to be antisymmetrized.

We mention that this condition appeared in many different contextes as conformal Killing spinors
[17], pseudo-classical spinning point particles models [18], Dirac-type operators that commute with
the standard Dirac operator [19].

A concrete realization of (43) is presented by the KM system [5]. In Carter’s construction a
primary Killing vector (41) is identified, modulo a rationalization factor, with the source current j* of
the electromagnetic field -

FY = dmj". (44)
Therefore the KM system is defined assuming that the electromagnetic field Fj; is a CKY tensor
which, in addition, is a closed 2-form (5). Its Hodge dual

lfij = *Fij y (45)

is a KY tensor (see Section 4).

Finally, the KM system possesses a hidden symmetry associated with the KY tensor (45). It is
quite simple to observe that FinkJ ~ Fj; x F) kj is a symmetric matrix (in fact proportional with the
unit matrix) and therefore condition (43) is fulfilled.
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6 Concluding comments

To conclude let us discuss shortly some problems that deserve a further attention. An obvious extension
of the gauge covariant approach to hidden symmetries is represented by the non-abelian dynamics using
the appropriate Poisson brackets [3, 7]. We worked out some examples in an Euclidean 3-dimensional
space and restricted to SK tensors of rank 2. More elaborate examples working in a N-dimensional
curved space and involving higher ranks of SK tensors [20] will be presented elsewhere [21].

It is interesting to note that the conserved quantities associated with Killing tensors do not gener-
ally transfer to the quantized systems producing so-called quantum anomalies [22, 23, 24]. Quantum
anomalies in the presence of non-abelian gauge fields, higher order (k > 2) symmetries, skew-symmetric
torsions are a few possible extensions which deserve further study. Let us mention that the concept of
generalized (C)KY symmetry of spaces with a skew-symmetric torsion is more widely applicable and
may become very powerful [25].
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