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Abstract

We present several unexpected consequences of the noncommutativity of coordinates in classical
and quantum mechanics. Classically, a standard Lagrangian variational approach cannot be formu-
lated, dynamics is quite strange, and gauge invariance is broken for a particle minimally coupled
to an electromagnetic field. Quantum mechanically, the Schrödinger equation is quite nonstan-
dard, and no configuration-space Feynman formulation exists. Integrating out the momenta in the
phase-space path integral one obtains an effective Lagrangian, which however depends also on the
accelerations.

1 Introduction

As is well known [1], once the degrees of freedom of a physical system are identified, the dynamics is
determined by two elements:
1. The Hamiltonian, which is often quadratic in the momenta and often a finite power series in the
coordinates, symbolically

H ∼ p2 + V (q). (1)

2. The symplectic structure, determined by the Poisson brackets in classical mechanics

{qi, qj} = 0 {qi, pj} = δi
j {pi, pj} = 0, (2)

and by the Heisenberg commutation relations in quantum mechanics

[q̂i, q̂j ] = 0 [q̂i, p̂j ] = iδi
j [p̂i, p̂j ] = 0. (3)

Standard notation is used above, qi and pj representing the canonical coordinates and momenta of
the system under consideration (and h̄ ≡ 1).

A basic but fundamental consequence of the above equations is the following. Due to (3) - more
precisely to the fact that coordinates commute - one can use the coordinate representation p̂i = −i ∂

∂qi
.

Given now the relation ĤΨ = EΨ it is clear that quadracity of Ĥ in the momenta p̂i leads to the
usual second order Schrödinger partial differential equation. We stress that we needed simultaneously
a Hamiltonian quadratic in the momenta and [q̂i, q̂j ] = 0.

In this review, we will mainly give up this second constraint, exploring some of the consequences
of the following commutation relations

[q̂i, q̂j ] = iθij(q̂, p̂) [q̂i, p̂j ] = iδi
j [p̂i, p̂j ] = iFij(q̂, p̂). (4)

In the last years quantum mechanics with noncommuting coordinates attracted much attention
[7]-[20], especially for the simpler case of constant θ and F , which we adress here. For partial results
concerning nonconstant commutators, one may consult for instance [21]. In its simplest form non-
commutative (NC) mechanics follows the structure of ordinary mechanics, but allows in addition for
nonzero commutators among the coordinate operators.
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In the NC classical version one similarly generalizes the symplectic structure, by allowing further
nonvanishing Poisson brackets among coordinates. As will be shown in Section 2, the resulting equa-
tions of motion do not admit a standard Lagrangian formulation [20, 4], dynamics becomes occasionally
strange and gauge invariance itself gets broken.

The quantum theory is taken up in Section 3. The absence of a classical Lagrangian has as
counterpart in the NC quantum mechanical theory the lack of the usual configuration space path
integral. Only a phase space path integral can be constructed [19]. Nevertheless, one may search for
an effective Lagrangian theory in configuration space, by integrating over the momenta in the phase
space path integral. This leads to an acceleration-dependent Lagrangian in configuration space.

2 Classical Dynamics

2.1 Equations of motion

We begin with the classical theory. In addition to the Hamiltonian, one starts from the classical
analogue of (4), namely the generalized Poisson brackets

{qi, qj} = θij {qi, pj} = δi
j {pi, pj} = Fij . (5)

For simplicity in notation we will work in (2+1)-dimensions, although the extension to higher di-
mensionalities is straightforward. We will denote by xa, a = 1, 2, 3, 4 the phase space coordinates,
x1,2,3,4 = q1, p1, q2, p2. Since no risk of confusion exists, all indices will be put down from now on. Eqs.
(5) can then be rewritten as {xi, xj} = Θij , where

Θ =




0 θ 1 0
−θ 0 0 1
−1 0 0 σ

0 −1 −σ 0


 i.e. ω =

1
1− θσ




0 −σ 1 0
σ 0 0 1
−1 0 0 −θ

0 −1 θ 0


 . (6)

Above, Θij = (ω−1)ij , and ω is the symplectic form, which enters the action

S =
∫

dt

(
1
2
ωijxixj −H(x)

)
. (7)

Independent variation of S along each xa provides the equations of motion

ẋi = {xi, H} = Θij
∂H

∂xj
, (8)

more explicitely

q̇i =
∂H

∂pi
+ θεij

∂H

∂qj
ṗi = −∂H

∂qi
+ σεij

∂H

∂pj
, (9)

with ε12 = −ε21 = 1. If θ = σ = 0, (9) are the usual Hamilton equations.
Let us express the equations of motion in terms of q1 and q2. Considering Hamiltonians of the

form
H =

1
2
(p2

1 + p2
2) + V (q1, q2), (10)

one gets the coordinate equations of motion:

q̈i = −(1− θσ)
∂V

∂qi
+ σεij q̇j + θεij

d

dt

∂V

∂qj
, i = 1, 2. (11)

For θ 6= 0, it is easy to see that equations (11) are not derivable from a Lagrangian, if the potential
V is higher than quadratic in the coordinates. This is shown by finding a Lagrangian formulation
(unique up to total derivatives) for one of the two equations in (11), and seeing in which cases the
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second equation in (11) can be derived from it [18], or by using the so-called Helmholtz conditions
which are to be obeyed by a set of equations admitting a variational formulation [20].

We stress that if one would start from the Hamiltonian (10) and perform the usual Legendre
transformation, then use (9) to express p1,2 in terms of q1,2, one would get wrong equations of motion.
The usual procedure works correctly only if θ = 0. On the other hand, σ is quite harmless; it plays
the role of a constant magnetic field.

The RHS of (11) contains three kinds of terms. The first, −(1 − θσ)∂V
∂qi

, is the usual Newtonian
force, apart from the (1 − θσ) factor. The second term, σεij q̇j , mimicks a magnetic field. It is the
third term which prevents the Lagrangian formalism from working. However, if it is taken in isolation,
it gives

q̈i = θεij
d

dt

∂V

∂qj
, i.e. q̇i = θεij

∂V

∂qj
+ ci, i = 1, 2, (12)

ci being two arbitrary constants. Eqs. (12) allow a first-order Lagrangian formulation. For instance,
the equations q̇i = θεij

∂V
∂qj

follow from the Lagrangian L = 1
2(q̇1q2 − q1q̇2)− V (qi).

Equations (11) admit a first order Lagrangian description, in the limit

σθ → 1. (13)

In this case, the usual Newtonian force term disappears completely (this is kind of antipodal to usual
Hamiltonian dynamics), and (11) becomes

q̇i = εij

(
qj

θ
+ θ

∂V

∂qj

)
+ Ci. (14)

A first-order Lagrangian for (14) is:

L =
1
2
(q̇1q2 − q̇2q1)− θV (qi)− 1

2θ
(q2

1 + q2
2) + C2q1 − C1q2. (15)

This Lagrangian contains a term which is first order in time derivatives, the usual potential V , and
an additional two-dimensional harmonic oscillator potential.

In fact, by taking at the level of the Hamiltonian equations of motion (9) the limit θσ = 1, which
renders Θ (and ω) singular, one observes that

q̇1 = −θṗ2 and q̇2 = θṗ1. (16)

This means that the limit (13) reduces the number of degrees of freedom of the phase-space by one
half, from four to two. Another way to see this is to notice that (14) arises from the one-dimensional
Hamiltonian

H = θV (q, p) +
1
2θ

(q2 + p2)− C2q + C1p (17)

after relabeling q1 = q, q2 = p. A similar (but not identical) mechanism for dimensional reduction is
involved in the Peierls substitution [23], which is based on the noncommutativity of coordinates in an
intense magnetic field, (cf. [24], which also refers to earlier work). One also uses the fact that in a
two-dimensional first-order system, the coordinates are canonically conjugate to each other.

In conclusion, if θ 6= 0 the equations of motion do not admit the usual variational formulation. One
could of course block diagonalize Θ by linear non-canonical transformations mixing the q’s and p’s. A
canonical symplectic structure (2) would then result, but also a Hamiltonian not anymore quadratic
in the (new) momenta. Hence one would not be able to eliminate the momenta from the equations of
Hamilton, and again no explicit Lagrangian formulation would be available.

2.2 Examples

We proceed with examples which do not admit a Lagrangian formulation and display some of their
unexpected features [20].
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Consider first the anisotropic harmonic oscillator potential, V = 1
2(a1q

2
1 + a2q

2
2), which gives the

equations of motion
mq̈1 = −(1− θσ)a1q1 + (σ + θma2)q̇2, (18)

mq̈2 = −(1− θσ)a2q2 − (σ + θma1)q̇1. (19)

If we chose σ + mθa2 = 0, then σ + mθa1 6= 0, provided a1 6= a2. q1 becomes a harmonic oscillator,
whereas q2 is a harmonic oscillator driven by a periodic force mθ(a1 − a2)q̇1. The solution for q1 is
the usual one, q1(t) = q1(0) cosω1t + (q′1(0)/ω1) sinω1t, whereas for q2 it reads

q2(t) = q2(0) cosω2t +
q′2(0)
ω2

sinω2t + θm
q′1(0) cos ω1t− ω1q1(0) sinω1t

1− θσ
. (20)

Above, mω2
i = (1 − θσ)ai, i = 1, 2. If θ is small, the last term in Eq.(20) is a perturbation which

produces oscillations around the commutative trajectory. The particle goes on a wiggly path, which
averages to the commutative one. If θ is big, or if |1 − θσ| << 1, the ”perturbation” explodes and
dominates the dynamics, which becomes completely different from the commutative one. One sees a
qualitative difference between a NC isotropic oscillator (which admits a Lagrangian form) and a NC
anisotropic one (no Lagrangian form).

As a second example consider, commutatively speaking, a constant force along q2, and a harmonic
one along q1, V = 1

2a1q
2
1 + bq2. The equations of motion are

mq̈1 = −(1− θσ)a1q1 + σq̇2, (21)

mq̈2 = −(1− θσ)b− (σ + θma1)q̇1. (22)

If σ = 0, again q1 is a harmonic oscillator, while q2 is driven by a constant plus periodic force. The
solution is the usual harmonic oscillator for q1, while for q2 one has

q2(t) = q2(0) + [q′2(0) + q1(0)θa1]t− bt2

2m
−

−θa1

[
q1(0)
ω1

sinω1t− q′1(0)
ω2

1

(1− cosω1t)
]
. (23)

Again, the NC trajectory wiggles around the commutative one. On the other hand, if σ + θma1 = 0,
q2 feels a constant force, while the oscillator q1 is driven by a linearly time-dependent force σq̇2. One
has the solution q2(t) = q2(0) + tq′2(0)− (1− θσ) bt2

2m , but

q1(t) = q1(0) cos ω1t +
q′1(0)
ω1

sinω1t +
σ

a1

[
q′2(0)

(1− θσ)
− b

m
t

]
(24)

A drastic change occurs: q1 grows linearly with time (it is not bounded anymore), and oscillates
around this path as a commutative oscillator.

As a third example, consider a potential which depends only on one coordinate, say V = V (q1).
If σ = 0 the equations of motion are

mq̈1 = −∂1V, mq̈2 = −θm
d

dt
∂1V = −θm2 d3q1

dt3
. (25)

If θ 6= 0, q1 transfers nontrivial dynamics to q2. More precisely, once q1(t) is known (its implicit form is
t(q1) =

∫ q1
0

dq′√
V (0)−V (q′)

), q2 is fixed by the second equation in (25). To illustrate, consider the quartic

potential V (q1) = V (0) − 1
2m2q2

1 + gq4
1. One can not find simple expressions for q1(t) in a nonlinear

problem in general. However, the classical solution satisfying q1(t = −∞) = 0 and q1(t = 0) = m√
g = λ

is simple enough

q1(t) =
m√
g

2e−mt

1 + e−2mt
. (26)
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Calculating q2(t) via (25) one obtains

q2(t) = q2(0) + q′2(0)t− θmq̇1(t), (27)

radically different from the θ = 0 expression, q2(t) = q2(0) + q′2(0)t.
Time-dependent backgrounds appearing ”out-of-nowhere” (actually being induced by the dynamics

of the other degrees of freedom) are thus possible in NC dynamics.

2.3 Gauge invariance

Another simple type of Hamiltonian worth studying is

H =
1
2

∑

i=1,2

(pi −Ai(qj))2, (28)

the gauge field Ai being minimally coupled. If the symplectic structure is given by (5, 6) then

q̇i = (pl −Al)(δil − θεij
∂Al

∂qj
), (29)

ṗi = (pj −Aj)(
∂Aj

∂qi
+ σεij). (30)

Assuming ∂Aj

∂t = 0 for simplicity, the pair (29) can be rewritten as

pi = Ai +
1
∆

d

dt
(qi + θεijAj), i = 1, 2, (31)

where ∆ = 1 + θF12 + θ2{A1, A2}q1q2 , with F12 = ∂1A2 − ∂2A1, {A1, A2}q1q2 = ∂A1
∂q1

∂A2
∂q2

− ∂A1
∂q2

∂A2
∂q1

.
Using (31) in (30), and assuming ∂A1

∂q1
= ∂A2

∂q2
= 0, one gets

q̈1 =
(

1 + θ
∂A1

∂q2

) 
−Ȧ1 +

(
∂A2

∂q1
+ σ

)
q̇2

1− θ ∂A2
∂q1


 , (32)

q̈2 =
(

1 + θ
∂A2

∂q1

) 
−Ȧ2 +

(
∂A1

∂q2
− σ

)
q̇1

1− θ ∂A1
∂q2


 . (33)

Let us consider the case of a constant magnetic field, B = F12 = ∂1A2 − ∂2A1. This can be obtained
in different gauges. A striking feature of the equations (32,33) is that they are not gauge invariant,
unless θ = 0. For instance, in the symmetric gauge, A1 = −q2B/2, A2 = q1B/2, one has

q̈1 = q̇2(σ + B + θB2/4) q̈2 = −q̇1(σ + B + θB2/4), (34)

whereas in the gauge A1 = 0, A2 = q1B one gets

q̈1 = q̇2
(σ + B)
(1 + θB)

q̈2 = −q̇1(σ + B)(1 + θB), (35)

which is not even derivable from a Lagrangian. One sees again that σ is inoffensive - it just adds to
B - whereas θ even breaks gauge invariance!

Thus, after the existence of a Lagrangian, a second cherished principle is lost due to θ 6= 0 - gauge
invariance. Since a non-zero σ mimicks a constant magnetic field, the remedy we propose is to account
for a magnetic field B not through the Hamiltonian - which remains free, but through the symplectic
form, by requiring {p1, p2} = B. When θ = 0 this is equivalent to (28), and does not pose problems
when θ 6= 0.

A formal remedy for this problem was envisaged in [22]. For further discussion of this topic one
can consult [17].
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3 Quantum theory

3.1 Quantum mechanics: formulation

We extend the three main formalisms of quantum mechanics (operatorial, Schrödinger, path integral)
to the case of noncommuting coordinates.

Operatorial quantization is trivially implemented using Eqs (4,6):

d

dt
x̂a = i[x̂a,H] = i[x̂a, x̂b]

∂H

∂x̂b
= Θab

∂H

∂x̂b
. (36)

The equations of motion (36) are an extension of the usual Heisenberg ones. They are the same as
(8), with the coordinates becoming operators.

A Schrödinger (wave function) formulation can easily be constructed, once an appropriate basis is
chosen in the Hilbert space on which the operators x̂a act. For instance, chose a basis in the Hilbert
space on which the operators x̂a act, for instance |q1, p2 >, i.e. the eigenstates of the operators q̂1

and p̂2. Then, for an arbitrary state |ψ >, define the wave function (half in coordinate space, half in
momentum space)

ψ(q1, p2, t) ≡< ψ(t)|q1, p2 > . (37)

The commutation relations (4) imply that the operators q̂2 and p̂1 have the following action on
ψ(q1, p2):

q̂2ψ = i(∂p2 − θ∂q1)ψ, p̂1ψ = i(−∂q1 + σ∂p2)ψ. (38)

If H = 1
2m(p̂2

1 + p̂2
2) + V (q̂1, q̂2), (38) leads to the Schrödinger equation

i
d

dt
ψ = Hψ =

[
1

2m

(
p2
2 − (∂q1 − σ∂p2)

2
)

+ V (q1, i∂p2 − iθ∂q1)
]
ψ(q1, p2). (39)

If σ = 0, a momentum-space wave function ψ(p1, p2, t) also exists; it will be discussed later, along
with the examples.

A phase space path integral for systems obeying the commutation relations (4) was constructed
in [19]. Since we saw that for generic systems, if θ 6= 0, equations (8) do not admit a Lagrangian
formulation, one can at best hope for a phase-space path integral formulation of the quantum theory
corresponding to the action (7). This is provided [19] by the path integral

Z =
∫ 4∏

k=1

Dxke
iS =

∫ 4∏

k=1

Dxke
i
∫

dt( 1
2
ωijxiẋj−H(x)). (40)

To put it briefly the prescription (40) is simple: if [x̂i, x̂j ] = iΘij then Z =
∫

Dxei
∫

dt(Θ−1
ij

xiẋj
2
−H),

and general: it applies to any Hamiltonian H. The above path integral can be derived by elementary
means from the canonical formulation [19]. All one needs to know is that Z represents a transition
amplitude between two states of a given Hilbert space, and that time-ordering of operators is enforced,
as usual, by the path integral,

∫
DxO1O2e

iS = 〈T{Ô1Ô2}〉.
Integration of the momenta is particularly transparent in the above path integral, and the result

- detailed in Section 3.3 - will be a simple and universal (the correction term is system independent)
effective Lagrangian: the simplest one not excluded by the no-go argument in [20].

3.2 Quantization: examples

We apply the formalism to the examples considered classically in Section 2.
For an harmonic potential, it can be shown by path integrals [19], or operatorially [5], that the

only change induced by NC is an anisotropy of the oscillator. However, starting with an anisotropic
oscillator, V = 1

2(a1q
2
1 + a2q

2
2), a1 6= a2, makes an important difference. The equations of motion are

the same as in (18,19), with q1,2 operators. For simplicity, assume σ + mθa2 = 0; then σ + mθa1 6= 0.
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q̂2 is driven by a periodic force and, being of the form (20), transitions between the states of the
quantum system will appear.

Our second example, V = 1
2a1q

2
1 + bq2, also exhibits peculiar behaviour. If σ = 0, the operator

solutions of (21,22) again involve transitions which would be absent if θ = 0. If σ +θma1 = 0, changes
are more dramatic. Eq. (24) shows that the particle is not bounded anymore along q1, in contrast
with the commutative case.

Third, consider the case in which the potential depends only on one coordinate, V = V (q1). If
σ = 0 an interesting phenomenon takes place. The commutation relations (4) admit a representation
in the basis |p1, p2 >, ψ(p1, p2, t) ≡< ψ(t)|p1, p2 >:

q̂1ψ = (i∂p1 + θαp2)ψ, q̂2ψ = (i∂p2 + θ(1 + α)p1)ψ(p1, p2), (41)

with α a parameter, and the Schrödinger equation becomes

i
d

dt
ψ =

[
1

2m

(
p2
1 + p2

2

)
+ V (i∂p1 + θΛp2, i∂p2 + θ(1 + Λ)p1)

]
ψ(p1, p2) (42)

This equation is (gauge) invariant under shifts of α by Λ,

α → α− Λ (43)

combined with multiplications of the momentum-space wave-function by a phase eiΛθp1p2 ,

ψ(p1, p2) → eiΛθp1p2ψ(p1, p2). (44)

θ plays the role of a ”magnetic field” in momentum space.
In particular, when Λ = α, q̂1 becomes θ-independent. Then, if V = V (q1) and σ = 0, the

Schrödinger equation is θ-independent. It has consequently the same spectrum with the commutative
problem, although classically the NC system does not even admit a Lagrangian formulation! For
example, V (q1, q2) = V (q1) = V (0) − 1

2m2q2
1 + gq4

1, on a NC space, gives rise to a nonlinear system
without classical Lagrangian formulation, but which has the same spectrum as the corresponding
commutative (Lagrangian) system.

If V = V (q1, q2) the above gauge invariance persists, but does not eliminate θ from the wave
equation.

3.3 Effective Lagrangian

We path-integrate over the momenta in (40), to obtain the effective Lagrangian. Starting from the
partition function ∫

Dq1Dq2Dp1Dp2e
iS (45)

with action

S =
∫ T

0
dt[p1q̇1 + p2q̇2 +

θ

2
(p1ṗ2 − p2ṗ1)− p2

1

2m
− p2

2

2m
− V (q)], (46)

we wish to integrate over the momenta p1, p2. The potential part V (q) depends only on q1 and q2

and plays no role in what follows (the method is valid for any V (q), or Hamiltonian with separate
quadratic dependence upon momenta). We divide the time interval T in n subintervals ε = T

n (n →∞
achieves the continuum limit), and choose for simplicity the discrete derivative ẋk ≡ xk+1−xk

ε (no issues
requiring symmetric operations appear in the following)). The relevant part of the discretized action
(excluding V (q) for now) becomes

S̃ =
n∑

k=0

[εp(k)
1 v

(k)
1 + p

(k)
2 v

(k)
2 +

θ

2
(p(k)

1 p
(k+1)
2 − p

(k)
2 p

(k+1)
1 )− ε

2m
(p(k)

1 )2 − ε

2m
(p(k)

2 )2]. (47)

The clearest way to proceed with the coupled Gaussian integrals is to introduce matrix notation.
Define the column vectors

V ≡ ε(v(0)
1 , v

(1)
1 , . . . , v

(n)
1 . . . v

(0)
2 , v

(1)
2 , . . . , v

(n)
2 . . .)T (48)
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P ≡ (p(0)
1 , p

(1)
1 , . . . , p

(n)
1 . . . p

(0)
2 , p

(1)
2 , . . . , p

(n)
2 . . .)T (49)

and the matrix

J = −a




1 0 0 · · 0 b 0 · ·
0 1 0 · · 0 0 b · ·
· · · · · · · ·
0 −b 0 · · 1 0 0 · ·
0 0 −b · · 0 1 0 · ·
· · · · · · · ·




.

where a = ε
2m , b = mθ

ε . Its inverse J−1 has the same form as above, but with different entries a′, b′,
namely a′ = 1/a and b′ = −b (the off diagonal part changes sign and the overall factor is reversed).
In matrix notation the discrete action becomes

S̃ = P T V + P T JP. (50)

the coordinate transformation
P̄ ≡ P +

1
2
J−1V (51)

does not change the path integral measure (DP̄ = DP ), and leads to

S̃ = P̄ T JP̄ − 1
4
V T J−1V. (52)

The first term is now integrated out - and no more dependency on momenta appears, whereas the
second term leads to an exponent of the form (modulo a factor of i)

−1
4
V T J−1V =

n∑

k=0

[ε
m

2
(v(k)

1 )2 + ε
m

2
(v(k)

2 )2 − θm2

2
(v(k)

1 v
(k+1)
2 − v

(k)
2 )v(k+1)

1 )] (53)

Upon taking the continuum limit ε → 0 we obtain
∫

Dq1Dq2Dp1Dp2e
iS = N

∫
Dq1Dq2e

i
∫ T

0
dtLeff (qi,vi,ai) (54)

with

Leff =
m

2
(q̇2

1 + q̇2
2)−

θm2

2
(q̇1q̈2 − q̇2q̈1)− V (q1, q2) (55)

and N a constant not depending on the q’s. We have reintroduced the potential term. The second
term in (55)

∆L = −1
2
θm2(q̇1q̈2 − q̇2q̈1). (56)

is the correction due to noncommutativity and it has an universal character as it is independent of
the potential V .

The term (56) was previously studied in detail in [7] starting from different considerations, and in
fact its appearance can be traced back to earlier developments (cf. [4, 8]). Lukierski et al. [7] added
(56) to a free Lagrangian m

2 ~v2, to provide a dynamical realization of a centrally extended (2+1)-
dimensional Galilean algebra. Upon constrained quantization of the resulting higher order action
(which circumvents the no-go theorem of [20]) noncommutative dynamics was shown to emerge for
appropriate choices of canonical variables. The negative energy resulting from two ”internal modes”
posed no problem, since they were easily shown to decouple from the four relevant degrees of freedom.
Interactions were subsequently introduced in a constrained way, in order to keep the ghosts harmless.
(the potential V was contrained in their analysis to depend only on the ”would-be” NC coordinates).

We went in the opposite direction; starting from an arbitrary system with Heisenberg noncom-
mutativity of the coordinates, we deduced the correction (56) term by path integral methods (this
lecturer is not aware of any canonical approach doing the same thing). Incidentally, the path integral
derivation gives a technical understanding of why even higher order terms are forbidden in the effective
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Lagrangian. It starts ab initio with arbitrary potentials V (q1, q2), in contrast to the inverse route of
Ref. [7], where one has to carefully pin down the (in the end NC) variables on which interactions must
depend.

The price to be paid for the initial noncommutativity of the coordinates is the appearance of second
order time derivatives in the effective action, and the ensuing lack of appropriate boundary/initial
conditions for the two (fortunately ghost-like) additional degrees of freedom. This is not an issue,
however, since the ”internal modes” have to be eliminated anyway [7].

More precisely, the equations of motion engendered by (55) are of third order in time derivatives,

εijθm
2 d3qj

dt3
+ mq̈i + ∂qiV = 0. (57)

No fourth-order time derivatives arise for q1, q2, and this leads to two constraints in the Hamiltonian
formulation. Six constants (BC/IC) are still required, two more in comparison with the commutative
case. We are not able to provide them, since we can at the very beginning start with only four
constants (for instance the initial and final values of q1 and p2). This apparent indeterminacy is a
consequence of the initial nonocommutativity of q1 and q2, but poses no serious problem, since one
can show [7] that exactly those constants are needed for the two ”internal” modes. Now these modes
must be eliminated for consistency (an elementary analysis appears in [8]).

The equations of motion (57) engendered by the effective Lagrangian (obtained via path integration
over momenta) need to be identical to the equations of motion (11), obtained via elimination of classical
momenta. In the first place, they are not of the same order. Nevertheless, a comparison reveals some
intriguing relationship. For Hamiltonians of the form (10) the completely classical coordinate equations
of motion (11) read, for σ = 0,

mq̈i = −∂V

∂qi
+ θεij

d

dt

∂V

∂qj
, i = 1, 2. (58)

By taking one more time derivative, we obtain

εijθm
2 d3qj

dt3
+ mq̈i + ∂qiV + mθ2 d2

dt2
∂V

∂qi
= 0. (59)

In the limit of small θ, in which θ2 terms can be neglected, (57) and (59) are identical! The effective
classical solutions appear to be given by a small θ limit of the purely classical solutions!
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