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Abstract

The precise determination of the coupling αs is one of the most important results in perturbative
QCD. After a brief review of some open questions in the extraction of αs from the hadronic decays
of the τ lepton, I discuss a new determination of αs(M2

τ ), based on an improved perturbation
expansion of the Adler function.

1 Introduction

At almost 40 years since its birth [1, 2], quantum chromodynamics (QCD), the modern description
of the strong interactions, appears to be a consistent theory reaching the level of precise predictions.
Since color symmetry is exact, the theory has a small number of fundamental constants. The strong
coupling αs is actually the only constant in the particular limit of massless QCD. After renormalization,
the dependence of the coupling on the scale is governed by the renormalization group equation (RGE):

µ2 dαs

dµ2
= β(αs) = −

∑

j≥0

βjα
j+2
s , (1)

which to lowest order predicted the famous ”asymptotic freedom” and suggested the ”confinement”
of the quarks inside the hadrons, the crucial ideas that imposed QCD as a successful theory in the
early 70’.

The coefficients βj , which for j ≥ 2 depend on the renormalization scheme, have been calculated
to four loops in the MS scheme [3, 4]:

β0 =
33− 2Nf

12π
,

β1 =
153− 19Nf

24π2
,

β2 =
77139− 15099Nf + 325N2

f

3456π3
,

β3 ≈ 29243− 6946.3Nf + 405.089N2
f + 1.49931N3

f

256π4
, (2)

where the numerical constants are functions of the SU(3)c group invariants and Nf is the number of
active quark flavours at the scale µ2.

An approximate solution of the equation (1) to four loops, written as

αs(µ2) =
1

β0L
− 1

β3
0L2

β1 lnL

+
1

β3
0L3

(
β2

1

β2
0

(
ln2 L− ln L− 1

)
+

β2

β0

)

+
1

β4
0L4

(
β3

1

β3
0

(
− ln3 L +

5
2

ln2 L + 2 lnL− 1
2

))

− 1
β4

0L4

(
3
β1β2

β2
0

ln L +
β3

2β0

)
, (3)
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depends on the arbitrary parameter ΛMS and is valid at large L = ln
(
µ2/Λ2

MS

)
. An alternative way

of writing the solution is based on the expansion in powers of the coupling a0 ≡ αs(µ2
0)/π at a fixed

scale:

αs(µ2) = a0 − β0ηa2
0

(
β1η − β2

0η2
)
a3

0

−
(

β2η − 5
2
β0β1η

2 + β3
0η3

)
a4

0

−
(

β3η − 3
2
β2

1η2 − 3β0β2η
2 +

13
3

β2
0β1η

3 − β4
0η4

)
a5

0. (4)

This representation is useful if the scales µ and µ0 are close to each other, because then the parameter
η = lnµ2/µ2

0 entering the coefficients of the expansion is small.
The arbitrary constant in the solution of the differential equation (1), chosen either as ΛMS in

(3) or as αs(µ2
0) in (4), can be determined only from experiment. The present determinations of the

strong coupling αs are based on all types of reactions that contain gluons: deep inelastic ep scattering,
e+e− collisions, p(p̄)-p collisions, τ hadronic decays, Υ decays. The recent determinations at various
scales are in an impressive agreement among each other1, providing one of the most precise tests of
perturbative QCD.

The hadronic decays of the τ lepton allow a particularly interesting determination of αs, since
it is done at a relatively low scale (Mτ = 1.78 GeV). The recent calculation of the Adler function to
four loops [7], the same order at which the β function is known [3, 4], stimulated the interest in an
updated determination of αs(M2

τ ) [8]-[11]. It is interesting to note that the average [6]

αs(M2
τ ) = 0.330± 0.014, (5)

leads to a value αs(M2
Z) = 0.1197± 0.0016, slightly higher than the world average [5, 6]

αs(M2
Z) = 0.1184± 0.0007, (6)

which includes all the determinations at various scales.
The determination of αs(M2

τ ) raises several theoretical problems, among which we mention the
validity of the Operator Product Expansion (OPE) near the timelike axis in the complex momentum
plane, the magnitude of the nonperturbative contributions (condensates) and the ambiguities of the
perturbative expansion, especially the dependence on the renormalization scale. In particular, two
choices of the scale, corresponding to the standard fixed-order perturbation theory (FOPT) and to
the so-called contour-improved perturbation theory (CIPT) [12, 13], lead to predictions of αs(M2

τ )
which differ by about 0.024 [8, 9, 10]. This discrepancy, the largest systematic theoretical uncertainty
in the previous determinations of αs at the Mτ scale, did not go away by adding the recently calculated
higher-order term [7]. The problem is complicated by the high order behaviour of the series: from
particular classes of Feynman diagrams it is known that the renormalized perturbation series in QCD
are divergent and are usually assumed to be asymptotic series. From independent arguments [19], it
is known that correlation amplitudes, regarded as functions of the coupling, are singular at αs = 0.
For QED these facts are known since a long time [18], but they do not affect the phenomenological
predictions since the coupling is very small. By contrast, for a large coupling like αs(M2

τ ) in QCD the
consequences are nontrivial.

In the present talk I discuss a new perturbation expansion in QCD, which includes theoretical
knowledge about the high-order behaviour of the series. I first briefly review the fixed-order and the
contour-improved expansions relevant for the determination of αs from τ decays. Then I define the
improved expansions based on the conformal mapping of the Borel plane and apply them for a new
determination of αs.

1By convention, the comparison is made at the scale equal to the mass of the Z boson. The values at various scales
are evolved to the reference scale by means of the RGE (1).
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Figure 1: The integration contour of Eq. (9) in the complex cut s-plane.

2 Fixed-order and contour-improved expansions in perturbative QCD

We recall the definition of the Adler function in massless QCD defined as the derivative

D(s) = −s
dΠ(s)

ds
, (7)

of the invariant amplitude Π(s) of the correlator

i

∫
dx eiqx 〈Ω|T{Jµ(x) Jν(0)†}|Ω〉 = (qµqν − q2gµν)Π(s), s = q2, (8)

where Jν is a current operator for u, d or s quarks. From the general principles of quantum field theory
(QFT) it follows that Π(s) is analytic in the complex s-plane cut along the positive (timelike) axis.

The quantity relevant for the extraction of αs(M2
τ ) is the integral

δ(0) =
1

2πi

∮

|s|=M2
τ

ds

s
ω(s) D̂(s), (9)

along the contour shown in Fig. 1, where ω(s) = 1−2s/M2
τ +2(s/M2

τ )3−(s/M2
τ )4 and D̂(s) = D(s)−1

is the so-called reduced Adler function. By analyticity, δ(0) is related to the total τ hadronic width,
defined by means of an integral along the real axis up to s = M2

τ . The advantage of the representation
(9) is that along the circle, i.e. far from the hadronic thresholds, one case use Operator Product
Expansion (OPE) and perturbative QCD for the calculation of the function D̂(s). It turns out that
in the present case the contributions of the condensates is small [9], therefore we concentrate on the
pure perturbative part.

We consider the formal expansion

D̂(s) =
∑

n≥1

[Kn + κn(−s/µ2)] (as(µ2))n, (10)

where as(s) ≡ αs(s)/π. In the MS scheme, for Nf = 3, the coefficients Kn calculated up to now to
four loops [7] have the values

K1 = 1, K2 = 1.6398, K3 = 6.3712, K4 = 49.076. (11)

For the next term the choices K5 = 283 and K5 = 275 were made recently in [9] and [10], respectively.
Finally, κn(−s/µ2) entering (10) depend on the renormalization scale µ2 and the coefficients of the
renormalization-group (RG).

By setting in (10) µ2 = M2
τ one obtains the standard fixed-order perturbation theory (FOPT).

Another useful choice is to set µ2 = −s, which leads to the renormalization-group improved expansion

D̂(s) =
∑

n≥1

Kn (as(−s))n. (12)
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Figure 2: The convergence disc of the expansion (13).

In the present context, this expansion is known also as ”contour-improved” perturbation theory
(CIPT), because αs(s) is calculated along the contour of the integral (9) using the solution of the
renormalization group equation, applied iteratively starting from s = −M2

τ . This procedure was
proposed in [12, 13] in order to avoid the large imaginary logarithms in the coefficients κn(−s/µ2),
responsible for a slow convergence of the expansion (10) near the timelike axis.

3 Improved expansions based on conformal mappings

As already mentioned, from particular classes of Feynman diagrams, and also from independent ar-
guments on the analytic properties in the αs plane [19], is is known that at large n the coefficients in
the expansions (10) and (12) display a factorial increase, Kn ∼ n!. According to Dyson’s proposal [18]
from 1952, the divergent series of perturbative QFT are assumed to be asymptotic to the expanded
functions.

The information about the high-order behaviour of the series is encoded in the properties of a
new function, B(u), defined by the power series

B(u) =
∞∑

n=0

bnun , (13)

with bn related to the original perturbative coefficients appearing in (12) by

bn =
Kn+1

βn
0 n!

, n ≥ 0, (14)

where β0 is the first coefficient in the expansion (1) of the β function.
The n! in the denominator of (14) compensate the increase of Kn+1, so that the series in (13)

is expected to converge in a disc on nonzero radius with the center at u = 0. According to present
knowledge, the function B(u), which is called the Borel transform of the Adler function, has branch
point singularities in the u-plane, along the negative axis - the ultraviolet (UV) renormalons - and the
positive axis - the infrared (IR) renormalons. Specifically, the branch cuts are situated along the rays
u ≤ −1 and u ≥ 2. The nature of the first branch points was established in [20] and in [21] (see also
[9]). Thus, near the first branch points, i.e. for u ∼ −1 and u ∼ 2, respectively, B(u) behaves as

B(u) ∼ r1

(1 + u)γ1
, B(u) ∼ r2

(1− u/2)γ2
, (15)

where the residues r1 and r2 are not known, but the exponents γ1 and γ2 are known positive numbers
[20, 21, 9].

The original expansion (12) can be recovered from the definition

D̂(s) ≡ 1
β0

PV

∞∫

0

e−u/(β0as(s)) B(u) du , (16)
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where PV denotes the Principal Value. As shown in [22, 14], the PV prescription is the best choice if
one wants to preserve as much as possible the analyticity properties of the correlators in the s-plane,
which follow from causality and unitarity.

The expansion (13) converges only in the disc |u| < 1, imposed by the first singularity of B(u)
at u = −1 (see Fig. 2). A series with a larger domain of convergence can be obtained by expanding
B(u) in powers of a new variable. As shown in [17] (see also [16]), the variable achieving the conformal
mapping of the whole analyticity domain of the expanded function onto a disc in the new complex
plane provides an expansion that converges in the whole complex plane, except for the cuts, and has
the best asymptotic convergence rate2.

In the present case, assuming that B(u) has only the above-mentioned singularities on the real
axis with a gap, being holomorphic elsewhere, the optimal variable defined in [17] reads:

w̃(u) =
√

1 + u−
√

1− u/2√
1 + u +

√
1− u/2

. (17)

This function maps the u-plane cut for u ≥ 2 and u ≤ −1 onto the unit disc |w| < 1 in the complex
plane w = w̃(u), such that w̃(0) = 0, w̃(2) = 1 and w̃(−1) = −1. According to general arguments
[17], the expansion

B(u) =
∑

n≥0

dn (w̃(u))n (18)

converges in the whole disc |w| < 1 and has the best asymptotic rate of convergence compared to all
the expansions of the function B(u) in powers of other variables.

The series (18) can be used to define an alternative expansion of D̂(s). This is obtained formally
by inserting (18) into (16) and interchanging the order of summation and integration. Thus, we adopt
the modified contour-improved expansion defined as [14]

D̂(s) =
∑

n≥0

dnWn(s), (19)

where

Wn(s) =
1
β0

PV

∞∫

0

e−u/(β0as(s)) (w̃(u))n du . (20)

The expansion (18) exploits only the location of the singularities in the Borel plane. However, as
shown in (15), some information exists also about the nature of the singularities, and it is convenient
to incorporate it explicitly [27]. This is achieved, for instance, by expanding

(1 + w)2γ1(1− w)2γ2B(ũ(w)) =
∑

n≥0

cn wn, (21)

where ũ(w) is the inverse of (17).
While the expansion (18) is unique, the explicit inclusion of the first singularities of B(u) contains

some arbitrariness. The description of the singularities by multiplicative factors is a possibility, but
is not a priori necessary. Moreover, the factors are not unique. For a more detailed analysis of this
problem see [15, 16].

The expansion (21) suggests the definition of the new CIPT

D̂(s) =
∑

n≥0

cnWn(s), (22)

where the expansion functions are defined as

Wn(s) =
1
β0

PV

∞∫

0

e−u/(β0as(s)) (w̃(u))n

(1 + w̃(u))2γ1(1− w̃(u))2γ2
du . (23)

2For QCD, the use of a conformal mapping in the Borel plane was suggested in [23] and was applied in a more limited
context in [24]. Applications of the method were considered also in [25, 26].
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Figure 3: Values of δ(0) for the model defined in [9], calculated with the standard (left) and the new
(right) CIPT and FOPT, for αs(M2

τ ) = 0.34, as a function of the perturbative order N . The horizontal
band is the exact value δ(0) = 0.2371.

The expansions (19) and (22) reproduce the coefficients Kn of the usual expansion (10), when
the functions (20) and (23) are expanded in powers of the coupling. In fact, as shown in [14], the new
expansion functions are formally represented by asymptotic series in powers of the coupling, much like
the expanded correlator itself.

To obtain the FO version of the new expansions, we start from (10) and define the corresponding
Borel transform

B̃(u, s) =
∞∑

n=0

b̃n(s)un , (24)

where

b̃n(s) =
Kn+1 + κn+1(−s/µ2)

βn
0 n!

, n ≥ 0. (25)

By comparing Eqs.(24), (25) with (13), (14), one can see that the singularities of B(u) are present
also in the function B̃(u, s), which we expand as:

B̃(u, s) =
∑

n≥0

d̃n(s) (w̃(u))n. (26)

This leads us to the definition of a modified FOPT, analogous to the CIPT expansion (19):

D̂(s) =
∑

n≥0

d̃n(s) W̃n, (27)

in terms of the functions

W̃n =
1
β0

PV

∞∫

0

e−u/(β0as(µ2)) (w̃(u))n du . (28)

If we impose explicitly the behaviour (15), we obtain the new FO expansion:

D̂(s) =
∑

n≥0

c̃n(s) W̃n, (29)

in terms of the functions

W̃n =
1
β0

PV

∞∫

0

e−u/(β0as(µ2)) (w̃(u))n

(1 + w̃(u))2γ1(1− w̃(u))2γ2
du . (30)

The properties of the new expansions are illustrated in Figs. 3-5 using a realistic model of the
Adler function proposed in [9]. The comparison of the standard CIPT and FOPT with the new
CIPT and FOPT is seen from Fig. 3 where we show δ(0) calculated as a function of the order up to
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Figure 4: Real part of D̂(s) calculated with the new CIPT (left) and the new FOPT (right) along the
circle s = M2

τ exp(iϕ).
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Figure 5: Imaginary part of D̂(s) calculated with the new CIPT (left) and the new FOPT (right)
along the circle s = M2

τ exp(iϕ).

which the series have been summed. The figure in the left panel shows that the standard CIPT does
not approach the true value, staying below it up to the orders at which the results start to exhibit
large oscillations. By contrast, the new CIPT gives very good results which approach the true value
with great accuracy when N increases. As concerns FOPT, the new approach gives results somewhat
poorer than the standard one at low orders. At large orders, when the standard FOPT shows large
oscillations, the new FOPT leads to values closer to the true result, but not as good as those obtained
with the new CIPT.

In order to understand these results, we calculated the Adler function D̂(s) for complex s along
the integration contour in the integral (9). In Figs. 4 and 5 we present the real and the imaginary
part part of D̂(s) calculated with the new contour-improved and fixed-order expansions, for s along
the upper semicircle in the definition (9) of δ(0) (s = M2

τ eiϕ, for 0 ≤ ϕ ≤ π).
From Figs. 4 and 5, one can see that the new CIPT give approximations of the real and imaginary

parts of D̂(s) that improve continously with increasing N along the whole contour. As concerns FOPT,
it gives a very good approximation of D̂(s), which improves continously with increasing N , for ϕ close
to π, i.e. near the spacelike axis. However, the description deteriorates as ϕ approaches 0, i.e. near
the timelike axis. This can be understood by the large imaginary logarithms of the coefficients κ in
the expansion (10) when s is close to the timelike axis.

4 Determination of αs(M
2
τ )

The determination of αs(M2
τ ) amounts to the calculation of δ(0) defined in (9) using a specific expansion

of D̂(s) and solving the equation δ(0) = δ
(0)
phen with respect to the coupling. We shall consider here the

new CIPT and FOPT expansions defined in (22) and (29), respectively.
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Using as input the phenomenological value quoted in [9]

δ
(0)
phen = 0.2042± 0.0050, (31)

the first four Kn in the MS scheme given in (11), and the estimate K5 ≈ 283 from [9], we obtain:

αs(M2
τ ) = 0.3198 +0.0113

−0.0094 , new CIPT,

αs(M2
τ ) = 0.3113 +0.0114

−0.0050 , new FOPT. (32)

As discussed in [11], CIPT is more sensitive to the uncertainty of the last perturbative term, while
FOPT is sensitive to the change of the renormalization scale µ2 around the value µ2 = M2

τ .
It is remarkable that the difference between the central values in (32) is only 0.009, while for

the standard CIPT and FOPT the difference is 0.024. The new expansions remove thus the most
intriguing theoretical discrepancy in the determination of αs from τ decays. We note that both values
in (32) are closer to the standard FOPT than to the standard CIPT.

We take as best result the value given in (32) by the new CIPT:

αs(M2
τ ) = 0.320 ± 0.011 , (33)

which, evolved to the MZ scale, leads to the prediction αs(M2
Z) = 0.1180 ± 0.0015, very close to the

world average (6).
The result (33) is based on a systematic perturbation theory, and its uncertainty is related mainly

to the error of the last perturbative term. So, the accuracy of the prediction is expected to increase
when more perturbative terms for the Adler function in QCD will be available.

In conclusion, the determinations of αs from various processes at different scales provide a solid
test of QCD. The perturbative expansion of QCD can be improved by including information about
the high-order behaviour of the series, increasing the precision of its predictions.
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