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Abstract

Massive 4-forms are analyzed from the point of view of the Hamiltonian path

integral quantization. More precisely, the quantization procedure is based on the

path integral of a first-class system equivalent (at both classical and quantum levels)

with the original theory. This first-class system is constructed using the Batalin-

Fradkin method. This approach finally outputs the manifestly Lorentz covariant

path integral for 4- and ( − 5)-forms with topological coupling.
PACS number: 11.10.Ef

1 Introduction

The covariant quantization of Hamiltonian systems possessing only second-class con-

straints can be done through construction of an equivalent first-class system and then

quantizing the resulting first-class system. The construction of the equivalent first-class

system can be achieved using constraints conversion [1]—[4] method. This quantization

procedure was applied to various models [5]—[21]. The importance of the models with

-form gauge fields (antisymmetric tensor fields of various orders) are interesting from

the point of view of string and superstring theory, supergravity, and the gauge theory of

gravity [22]—[27] being well-known the inclusion of these fields within the field spectrum

of supergravity in 10 or 11 dimensions [24, 25]. In this paper we present diferent as-

pects of the quantization of the massive 4-forms. The quantization procedure is based on

the construction of an equivalent first-class system using Batalin—Fradkin (BF) methods

and then quantizing the resulting first-class system. The BF approach [1]—[4] relies on

enlarging the original phase-space and constructing a first-class constraint set and a first-

class Hamiltonian, with the property that they coincide with the original second-class

constraints and respectively with the starting canonical Hamiltonian if one sets all the

extravariables equal to zero.

The present paper is organized in three sections. In Section 2 we do a short review

on the BF approach to the problem of constructing a first-class system equivalent with a

second-class theory, we exemplify in detail this method on massive 4-forms and construct

the path integral associated with the first-class systems associated with this model. Based

on an appropriate extension of the phase-space, integrating out the auxiliary fields, and

performing some field redefinitions, we find the manifestly Lorentz-covariant path integrals

corresponding to the Lagrangian formulation of the first-class systems which reduce to

the Lagrangian path-integral for 4- and ( − 5)-forms with topological coupling. Section
3 ends the paper with the main conclusions.
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2 BF method

The starting point is a bosonic dynamic systemwith the phase-space locally parameterized

by  canonical pairs  = ( ), endowed with the canonical Hamiltonian , and

subject to the second-class constraints

0 () ≈ 0 0 = 1 20 (1)

In order to construct a first-class system equivalent to the starting second-class one in

the framework of the BF approach [1]—[4] we enlarge the original phase-space with the

variables ()=12 , ( ≥ 0) and extend the Poisson bracket to the newly added

variables. The next step is to construct a set of independent, smooth, real functions

defined on the extended phase-space, ( ( ))=10+
, such that

0 ( 0) ≡ 0 ()  ̄ ( 0) ≡ 0 [ ] = 0 (2)

where ̄ = 20 + 10 + . In the last step we generate a smooth, real function

BF ( ), defined on the extended phase-space, with the properties

BF ( 0) ≡  ()  [BF ] =  
  (3)

The previous steps unravel a dynamic system subject to the first-class constraints ( ) ≈
0 and whose evolution is governed by the first-class HamiltonianBF ( ). The first-class

system constructed by the BF method is classically equivalent to the original second-class

theory since both display the same number of physical degrees of freedom

NBF =
1

2
[2+ 2 − 2 (0 +)] =

1

2
(2− 20) = N (4)

and the corresponding algebras of classical observables are isomorphic. Consequently, the

two systems become also equivalent at the level of the path integral quantization and we

can to replace the Hamiltonian path integral of the original second-class theory with that

of the BF first-class system.

Massive 4-forms in  space-time dimensions ( ≥ 5) are described by the Lagrangian
action [8]


0 [14] =

Z


µ
− 1

2 · 5!15
15 − 2

2 · 4!14
14

¶
 (5)

where the field strength of14 is defined in the standard manner by 15 ≡ [125].

We use the Minkowski metric tensor of ‘mostly minus’ signature  =  = diag(+ −
  −). The canonical analysis of the model described by the Lagrangian action (5) dis-
plays the constraints

(1)123 ≡ 0123 ≈ 0 (6)


(2)
123

≡ 4123 −
2

3!
0123 ≈ 0 (7)

and the canonical Hamiltonian

 =

Z
−1

µ
−4!
2
14

14 − 40123123
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+
1

2 · 5!15
15 +

2

2 · 4!14
14

¶
 (8)

where 14 are the canonical momenta conjugated to the fields 14 . Constraints (6)

and (7) are second-class and irreducible [28].

In the sequel we apply the BF method exposed in the above to the case of massive

4-forms. In view of this, we enlarge the original phase-space by adding the bosonic

fields/momenta {123 , Π123}. The constraints  ( ) ≈ 0 gain in the case of

massive 4-forms the concrete form

(1)123 ≡ (1)123 +123 ≈ 0 (9)


(2)
123

≡ 
(2)
123

− 

3!
Π123 ≈ 0 (10)

12 ≡ Π012 ≈ 0 (11)

Constraints (9)—(11) form an Abelian and irreducible first-class constraint set. The first-

class Hamiltonian complying with the general requirements (3) is expressed by

BF =  +

Z
−1

∙
1

2 · 3!Π
123Π123

− 1


Π123

µ
4123 −

2

3!
0123

¶
− 4

3!
012 (012 +Π12)

−1
4

µ
14 − 3!

2
[1234]

¶
[1234]

¸
 (12)

In the sequel we show how massive 4-forms get related to ( − 5)-form gauge fields.

In order to do this, we start from the first-class system constructed in the above and

subject to the first-class constraints (9)—(11), whose evolution is governed by the first-

class Hamiltonian (12). Imposing the canonical gauge conditions


(1)
123

≡ 0123 ≈ 0 12 ≡ 012 ≈ 0 (13)

we obtain that (9), (11) and (13) generate a second-class constraint subset, while (10) is

first-class. Eliminating the second-class constraints (9), (11) and (13) (the coordinates of

the reduced phase-space are {14 , 
123, 14, Π123}), we are left with a system

subject only to the first-class constraints

123 ≡ 4123 −


3!
Π123 ≈ 0 (14)

while the first-class Hamiltonian (12) takes the form

BF =

Z
−1

∙
−4!
2
14

14 +
1

2 · 5!15
15

+
2

2 · 4!14
14 +

1

2 · 3!Π
123Π123 −

4


Π123123

−1
4

¡
14 − 3[1234]

¢
[123]

¸
 (15)

We consider the quantities

F14 = 14 −
3!


[1234] F0123 =

1


Π123  (16)
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which are in (strong) involution with first-class constraints (14)

[F14  123 ] = [F0123  123 ] = 0 (17)

We define

W15 = [1F25] (18)

where F14 ≡ {F0123 F14}. By direct computation, it follows that

W14 = 2F14 +O (123)  (19)

From (19) we obtain that the equalities

F123 = 0 (20)

hold on the first-class surface (14). The solution to (19) is of the type

F14 = −
1



1

( − 4)!141−4
[1 2−4] (21)

Consequently, we enlarge the phase-space by adding the bosonic fields/momenta { 1−5,

1−5}. If we replace (21) in (14), then the constraint set takes the form

4123 +


3! ( − 4)!01231−4
[1 2−4] ≈ 0 (22)

remains first-class, and becomes third order reducible. In order to preserve the number of

physical degrees of freedom we have to impose the supplementary constraints (we consider

the case  ≥ 6)

01−6 ≈ 0 (−)−5 ( − 5) 1−6 ≈ 0 (23)

The constraints (22) and (23) are first-class and reducible of order  − 6 (or third order
reducible if − 5 ≤ 4). The gauge transformation of the quantity [1234] leads to the

relation

[1234] =
(−)−1
3!

0141−5
1−5 (24)

Using (16), (21) and (24), the first-class Hamiltonian takes the form

BF =

Z
−1

∙
−4!
2
14

14 +
1

2 · 5!15
15

+ (−) 1

2 · ( − 4)![12−4]
[1 2−4] +

2

2 · 4!14
14

+
1



1

( − 4)!01231−4
[1 2−4]×

×
µ
4

123 +


3! ( − 4)!
01231−4[12−4]

¶
+ (−) 

!
0141−5

14 1−5

− (−) ( − 5)!
2

1−5
1−5

¸
 (25)

43



For each first-class theory we can identify a set of fundamental classical observables such

that they are in a one-to-one correspondence and possess the same Poisson brackets (in the

case of the first-class theory with the phase-space locally parameterized by {14 , 
14 ,

123, Π
123} and subject to the first-class constraints (14) the fundamental classical

observables read as {14− 3!

[1234], Π123 and 

14}, while for the first-class theory

with the phase-space locally parameterized by {14, 
14, 1−5 , 

1−5} and

subject to the first-class constraints (22) and (23) the fundamental classical observables

are {14 +
(−)


0141−5
1−5 , − 1

(−4)!01231−4
[1 2−4] and 14}).

The procedure exposed previously preserves the equivalence between the two first-class

theories. As a result, the BF theory and the reducible first-class system remain equivalent

also at the level of the Hamiltonian path integral quantization. This further implies that

the reducible first-class system is completely equivalent with the original second-class

theory. Due to this equivalence one can replace the Hamiltonian path integral of massive

4-forms with that associated with the first-class system reducible of order − 6 (or third
order reducible if  − 5 ≤ 4). The first-class Hamiltonian (25) outputs the argument of
the exponential from the Hamiltonian path integral of the reducible first-class system as

BF =

Z


£
(014)

14 +
¡
001−6

¢
 01−6

+
¡
01−5

¢
 1−5 −HBF

− 123

µ
4

123 +


3! ( − 4)!
01231−4[12−4]

¶
−(1)1−6

01−6 − (−)−1 ( − 5)(2)1−6
1−6

i
 (26)

If we perform the transformation

123 −→ ̄123 = 1−1 +
1



1

( − 4)!01231−4
[1 2−4] (27)

in the path integral, the argument of the exponential becomes

BF =

Z


£
(014)

14 +
¡
001−6

¢
 01−6

+
¡
01−5

¢
 1−5 +

4!

2
14

14 − 1

2 · 5!15
15

− (−) 1

2 · ( − 4)![12−4]
[1 2−4]

− 2

2 · 4!14
14 + (−) ( − 5)!

2
1−5

1−5

− (−) 

4!
0141−5

14 1−5

− ̄123

µ
4

123 +


3! ( − 4)!
01231−4[12−4]

¶
−(1)1−6

01−6 − (−)−1 ( − 5)(2)1−6
1−6

i
 (28)

At this stage, the Hamiltonian path integral of the reducible first-class systems reads

BF =

Z
D
³
14 1−5 

14   1−5  ̄123 
(1)
1−6 

(2)
1−6

´
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× 
¡
[14 ] [1−5 ]

¢
exp (iBF)  (29)

where ’
¡
[14 ] [1−5]

¢
’ represents the integration measure associated with the

model subject to the reducible first-class constraints (22) and (23). This measure includes

some suitable canonical gauge conditions [10], is independent of the chosen gauge-fixing

conditions [29], and is taken such that (29) is convergent [30]. In order to obtain from

(28) a path integral exhibiting a manifestly Lorentz-covariant functional in its exponen-

tial, we enlarge the original phase-space with the Lagrange multipliers { ̄123, 
(2)
1−6}

and their canonical momenta {123, 1−6} and add the constraints [28]

123 ≈ 0 1−6 ≈ 0 (30)

The argument of the exponential from the Hamiltonian path integral for the first-class

theory subject to the first-class constraints (22), (23) and (30) reads as

BF =

Z


£
(014)

14 +
¡
001−6

¢
 01−6

+
¡
01−5

¢
 1−5 +

¡
0̄123

¢
123 +

³
0

(2)
1−6

´
1−6

+
4!

2
14

14 − 1

2 · 5!15
15

− (−) 1

2 · ( − 4)![12−4]
[1 2−4]

− 2

2 · !14
14 + (−) ( − 5)!

2
1−5

1−5

− (−) 

4!
0141−5

14 1−5

− ̄123

µ
4

123 +


3! ( − 4)!
01231−4[12−4]

¶
− 

(1)
1−6

01−6 − (−)−1 ( − 5)(2)1−6
1−6

−Λ123
123 − Λ1−6

1−6
¤
 (31)

Performing in path integral some partial integrations and using the notations

̄123 ≡ ̄1230 
(2)
1−6 ≡ ̄1−60 (32)

the argument of the exponential becomes

BF =

Z


∙
− 1

2 · 5!15
15 − 1

2 · 4! ̄014̄
014

− (−) 1

2 · ( − 4)!1−4
1−4

− (−) 1

2 · ( − 5)!01−5
01−5

+


3! ( − 4)!01231−4̄
0123 1−4

+


4! ( − 5)!1401−5
14 01−5

¸
 (33)
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In the last functional we also used the notations

̄014 = 014 + [1̄234]0 1−4 = [12−4] (34)

01−5 = 01−5 + (−)−5 [1̄2−5]0 (35)

The functional (33) associated with the reducible first-class system takes a manifestly

Lorentz-covariant form

BF =

Z


∙
− 1

2 · 5! ̄15̄
15 − (−) 1

2 · ( − 4)!1−4
1−4

+


4! ( − 4)!141−4̄
1 1−4

¸
 (36)

and describes a topological coupling between the 4-form ̄14 and the ( − 5)-form
̄1−5 [31, 32].

3 Conclusion

In this paper we performed the path integral quantization of massive 4-forms in the

framework of BF method. The strategy involved two steps. First, starting from the

original second-class theory we constructed a first-class theory. Second, we built the

Hamiltonian path integral corresponding to the first-class system. The BF approach to

the issue of constructing a first-class theory starting from a second-class system demands

an appropriate extension of the original phase-space and then the construction of a first-

class constraint set and of a first-class Hamiltonian. The Hamiltonian path integral of

the first-class system takes a manifestly Lorentz-covariant form after integrating out the

auxiliary fields and performing some field redefinitions. We identified the Lagrangian path

integral for 4- and ( − 5)-forms with topological coupling.
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