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Abstract

A particular class of numerical solvers for generic first oder ODEs is constructed.
Generally integration errors for integration schemes show a specific behaviour (due
to the use of finite precision arithmetic) for small enough time steps. It is shown with
numerical experiments how this class of numerical solvers behaves in an unexpected
way.

1 Introduction

A general first order differential equation in an n-dimensional euclidian space is considered:

d

dt
x = v(x). (1)

If it exists, let the solution to this differential equation be given formally by ξ:

x(t + h) = ξ(x(t), h) (2)

To find a numerical approximation of ξ(·, h), there are several possible approaches; some
examples are the well known Runge-Kutta schemes, or, if Eq (1) has certain symme-
tries, specialised solvers like composition schemes [1, 2, 3, 4, 5]. The simplest numerical
integration scheme is the Euler method:

y(1)(x, h) = x + hv(x) (3)

This method is of the global order 1, meaning that the integration error for a finite time
T is proportional to the timestep h used. Note that in the following only the global order
of an integration scheme is refered to. In [6] it is explained that the Euler scheme can
be used to produce a second order approximation through extrapolation. Here that idea
is generalized into a class of Euler extrapolation (EE) schemes; previous such classes of
Euler extrapolations are discussed in [7].

This paper is structured in two main parts: first a presentation of the algorithm is given
in the next section, with the overview of the rigurous construction following. Numerical
experiments are then discussed: first it is shown that these extrapolations are generally
problematic in the context of floating point arithmetic. Specific “good” extrapolations
are then presented, and the method of finding them is discussed. In the end, a brief
comparison with symplectic composition methods is performed.
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2 Algorithm

The method is first presented here fully for clarity without proof. Let us note the “k
applications of the Euler scheme” with

e(x, v, h, 1) ≡ x + hv(x) (4)

e(x, v, h, k) ≡ e(e(x, v, h, k − 1), v, h, k) (5)

A sequence of n positive integers is chosen:

K = {ki}1≤i≤n with ki < kj ∀i < j (6)

The “coefficient function” is computed as:

c(K, i) = kn−1
i

∏
j �=i

1≤j≤n

1

ki − kj

(7)

Then, it will be shown in section 3 that the following formula gives an nth order
integration scheme:

ξ(K)(x, v, h) =

n∑
i=1

c(K, i)e(x, v, h/ki, ki) (8)

3 Order proof

In a more general setting, consider an increasing sequence of natural numbers

f : N
∗ → N

∗, f(n) < f(m) ∀n < m (9)

With the above notation of recursive applications of the Euler scheme, let

z(f,n)(h) = e(x, v, h/f(n), f(n)) (10)

Because the Euler scheme is a first order scheme, the following hold for the errors of
the z values:

z(f,1) = ξ + ε1
h

f(1)
+ ε2

(
h

f(1)

)2

+ · · ·+ εk

(
h

f(1)

)k

+ . . . (11)

z(f,2) = ξ + ε1
h

f(2)
+ ε2

(
h

f(2)

)2

+ · · ·+ εk

(
h

f(2)

)k

+ . . . (12)

. . . (13)

z(f,n) = ξ + ε1
h

f(n)
+ ε2

(
h

f(n)

)2

+ · · ·+ εk

(
h

f(n)

)k

+ . . . (14)

. . . (15)

From this set of relations, extract the first n, and just keep the first n terms on the right
hand side. This results in a linear system of equations, with the unknowns ξ and εk. It will
be shown that the resulting “solution” for ξ is the ξ(F ) formula, where F = {f(k)}1≤k≤n.
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Because this is a linear system of equations, the solution is a ratio of determinants.
With a slight abuse of notations, let:

D(f, n, z) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z(f,1) 1

f(1)

1

f(1)2
· · ·

1

f(1)n−1

z(f,2) 1

f(2)

1

f(2)2
· · ·

1

f(2)n−1

...
...

...
. . .

...

z(f,n) 1

f(n)

1

f(n)2
· · ·

1

f(n)n−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(16)

and then the solution is

ξ(F ) =
D(f, n, z)

D(f, n, 1)
(17)

The h was omitted from the D notation because it would simplify anyway in the formula
for ξ. Note, however, that D(f, n, 1) is a Vandermonde determinant:

D(f, n, 1) =
∏

1≤i<j≤n

(
1

f(j)
−

1

f(i)

)
(18)

Similarly, if D(f, n, z) is expanded after the first column, smaller Vandermonde deter-
minants are found:

d(f, n, i) =

⎛
⎜⎝ ∏

j �=i

1≤j≤n

1

f(j)

⎞
⎟⎠ ∏

k1,k2 �=i

1≤k1<k2≤n

(
1

f(k2)
−

1

f(k1)

)
(19)

Then ξ(F ) can be rewritten

ξ(F ) =
1

D(f, n, 1)

∑
1≤i≤n

(−1)i+1z(f,i)d(f, n, i) (20)

The coefficient for each z(f,i) is:

c(f, n, i) =
(−1)i+1

D(f, n, 1)
d(f, n, i) (21)

which simplifies to the value given in the algorithm:

c(f, n, i) =
∏
k �=i

1≤k≤n

f(i)

f(i) − f(k)
(22)

4 Numerical experiments

The algorithm presented was constructed out of the need of an explicit high order solver
for a generic ordinary differential equation. The interest was to have several approaches to
the same problem, mainly for testing purposes. Outside the scope of that initial problem,
it appears that this class of schemes has an interesting property in a pure numerical
analysis context.
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4.1 Setup

Consider an initial condition x0 for equation (1), and some generic integration scheme
η(x, v, h, k) (same recursive definition as for e). There are at least two types of errors that
can be constructed right away for the trajectory leaving from x0:

ε(1)(x0, v, h, n) =
∥∥η

(
η

(
x0, v, h

n
, n

)
, v,−h

n
, n

)∥∥ (23)

ε(2)(x0, v, h, n, m) =
∥∥η

(
x0, v, h

n
, n

)
− η

(
x0, v, h

m
, m

)∥∥ (24)

ε(1) seems the most appropriate error computation; however, it fails to properly estimate
the integration error when the system (i.e. v) has some particular symmetry, or if the
map η is exactly time reversible (as is the case for widely used composition methods).

ε(2) should generally be used with geometric progressions (e.g. n = 2p and m = 2p+1).
It usually works just as well with more general series of steps.

As a sidenote, both ε are measurements of local integration errors — they only diagnose
the accuracy of x(t+h) estimated from x(t) for relatively small h. In the context of particle
transport, different errors can be much more important [5].

4.2 Error behaviour for EE

For the sake of simplicity, a generic notation for an average error is introduced:

ε(p) = 〈ε(1)(xi, v, 1, 2p)〉i (25)

xi is assumed to be a representative set of initial conditions for the system considered,
and ε(p) is the average error over the xi.

For any properly implemented η of global order n, when p increases enough, the error
is proportional to the nth power of the timestep ε(p) ∼ 2−np. However, finite precision
arithmetic leads to the accumulation of round off errors in the result. So once 2p becomes
large enough, ε(p) no longer decreases (it usually starts to increase proportionally to 2p).
This behaviour is well known [8], and quite natural. If more accurate results are required,
correspondingly higher precision arithmetic is needed in the intermediary computations.

It appears that this error saturation mechanism is different for the ξ(K) schemes.
Figures 1, 2 and 3 show integration errors for a 2 dimensional chaotic system defined by

H(x, y, px, py) = 1
2
(p2

x + p2
y)

+1
2
cos(x) + 1

2
cos(y) + 1

4
cos(x) cos(y) (26)

(the initial conditions were x = y = 0, and a randomly oriented momentum of 1)2. Note
that the alternative function ε(Δt) is used for the graphical representations.

If the floating point precision is changed from double to quadruple, errors obtained
with solvers constructed with some specific K do not change. Extensive tests show that
this behaviour is quite generic, and the relationship between the error curves obtained
with different sets of integers stays the same if the system considered is changed (1D
physical pendulum, 1D harmonic oscillator, etc).

2The font used for the plots is tiny so that the titles do not fill out the entire plot. The important
message is that there are curves that look identical in the center and right plots.
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Figure 1: Integration error for a few 3rd order ξ (single precision left, double center and
quadruple on the right).
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Figure 2: Integration error for a few 4th order ξ (single precision left, double center and
quadruple on the right).

4.3 Finding the “good” EE

Naturally, the results in the previous section demand an explanation.
The coefficients c(K, i) have alternating signs, and they generally have a wide range

in absolute value for any given K. Runge Kutta schemes, for example, also contain
weighted averages, but all the weights are positive (and thus they are all subunitary);
also, the weights are usually on the same scale. It is therefore not surprising that the EE
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Figure 3: Integration error for a few 5th order ξ (single precision left, double center and
quadruple on the right).

schemes are “bad” in a certain sense (the minimum error is not very small). However, it
is surprising that the minimum error does not decrease with the improvement of floating
point precision. Also, there is no obvious reason for the presence of “good” EE schemes
(i.e. those for which the minimum error does change). Note that this work is limited
to the comparison of single, double and quadruple precision computations; systematic
investigations of higher precision results are left for the future.

One interesting question that arises is how to construct the sets K for which ξ(K) is a
good scheme. The best method so far has been to simply compute the errors, and choose
the good K sets after the fact. This approach is reasonable for low order schemes, but is
very costly for cardK ≥ 8.
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In order to find good sets K efficiently, a physical pendulum

H(q, p) =
1

2
p2 − cos(q) (27)

is considered, with one fixed initial condition (q = 1, p = 1 seemed as appropriate as any
other).

Arrays of K sets are then constructed. Several methods were employed:

1. a cardinal o is considered, and an offset oe (the o stands for order of the solver).
Combinations of o elements from {1, 2, . . . , o + oe} are constructed systematically,
and error plots such as those in figure 1 are generated. By combing through the
resulting plots, good sets K are chosen. This is reasonable in terms of CPU time
for o ≤ 6. For larger orders, the offset oe required to reach good schemes is very
large, and the number of K sets becomes too large. Figures 1, 2 and 3 are a small
example of this approach (oe = 2).

2. Combinations are constructed as before, but only the error for a fixed p ∼ 10 is
computed. An array containing triplets (K counter from the list of combinations,
error and K itself) is output into two text files, sorted by id (counter), and another
array is sorted by error. The first few results from the list sorted by error can be
tested. The results of the id sorted list are plotted to look for some empiric first
filter for the K sets — see figure 4.

3. After using the second method, it was noticed that most good K begin with a series
of consecutive numbers. This results in the first rough filter: choose o and oe; choose
i; for j < oe − o, add {j, j + 1, . . . , j + i} to combinations of {j + i + 1, . . . , o + oe}.
With this filter, it was possible to find good 8th order EE schemes.

It is likely that some good schemes are missed by using the empiric filter, but the total
number of combinations tested must remain manageable. Note that the filter was inspired
by a plot such as figure 4, but for (o, oe) = (8, 17); the correspondingly larger datasets
can be provided on request.

4.4 Calibration with CM

The first hint that the EE schemes are problematic for small time steps was given when
they were compared with symplectic Composition Methods. In this subsection, the generic
error considered is based on ε2:

ε(p) = 〈ε(2)(xi, v, 1, 2p, 2p+1)〉i (28)

A set K is “good” if the corresponding ξ(K) shows similar behaviours of ε(p) for large p.
The same 2D system as before is used to generate figure 5. Only even orders for the CM
are considered (with CM coefficients recommended in [1]).
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Figure 4: Integration errors ε(11) for (o, oe) = (8, 8) versus the K id. Statistically,
“discontinuities” are observed where k1 is changed, and further, smaller discontinuities,
where k2, . . . are changed.
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Figure 5: Comparison of EE and CM. Computations were performed in double precision.
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5 Predicting error behaviour

Once the error behavior became apparent, the generating mechanisms were probed. The
most direct approach is to simply test if there are any systematic errors. Consider the
system of equations used to find the extrapolation formula. It is possible to compute the
coefficient of the term (from ξ(K)) proportional to hj with a simple sum:

s(K, j) =
∑

1≤i≤n

c(K, i)k−j
i (29)

This results in an array of coefficients for hj error terms, and the first assumption was
that these errors are doing something special for good K sets. It was assumed that s(K, j)
decreases very rapidly with j for good K, but it seems this is not the good diagnostic.
Computations show that for all K, s(K, j) either increases exponentially, reaches a stable
limit or decreases exponentially. Furthermore, plots of the limit s(K, j)/s(K, j + 1) are
much more regular than error plots such as figure 4.

6 Discussion

A class of integration schemes, Euler extrapolations, has been presented. EE solvers can
be used for generic systems, however they are extremely inefficient when compared to
Runge Kutta schemes, so they are mostly of academic interest.

An interesting aspect for these schemes is their behaviour for small timesteps. This
behaviour is reminiscent of the Gibbs phenomenon [9], where considering more terms of
a Fourier series does not improve the behaviour around discontinuities. Only in this case
increasing numerical precision does not improve errors for small time steps. However,
further studies with higher precision should be performed before drawing a conclusion.

Because these schemes are solutions of a linear system of equations, it is expected that
they have very good properties with respect to the conservation of invariants. In practice,
the Jacobian of some specific ξ(K) is also the solution of a linear system of equations,
and it should also differ from the Jacobian of ξ by an error of order cardK. This would
mean for instance that energy would be preserved for a conservative Hamiltonian system
with a high order, unlike the classic Runge Kutta scheme where there is a first order
error in the energy. This property isn’t directly relevant for Hamiltonian systems, where
implicit Gauss Runge Kutta schemes work perfectly even for unseparable Hamiltonians
(symplectic CM are recommended for the separable case). However it becomes interesting
in the case of more general volume preserving flows.

As a final note, the code used for this work is available under the GPL, and will be
provided on request. It was written in Python, using C for the intensive tasks of actually
integrating the equations.
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