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Abstract

In this paper it is proved that for dynamical systems described by Hamiltonians

of the type 0 () there exists an equivalent second-order Lagrangian formulation

whose configuration space coincides with the Hamiltonian phase-space.

It is well-known that the Euler—Lagrange [1] and Hamilton [2] equations play a cen-

tral role in theoretical physics. For systems described by non-degenerate Lagrangians the

Euler—Lagrange equations and Hamilton equations are equivalent. In the case of con-

strained (degenerate) systems [3]—[5] the equivalence between the two sets of equations is

no longer manifest and must be implemented via the introduction of Lagrange multipliers.

Another approach to constrained systems can be found in [6]—[7].

For a non-degenerate system, locally described by the bosonic canonical pair ( ) and

the Hamiltonian 0 ( ), the Hamilton equations

̇ =
0


 ̇ = −0


 (1)

can be derived from the first-order variational principle based on the action

0 [ ] =

Z 2

1

 (̇−0 ( ))  (2)

It is easy to see that the Euler—Lagrange equations for the first-order Lagrangian

L (  ̇ ̇) = ̇−0 ( ) (3)

coincide with the Hamiltonian equations (1). In consequence, given a Hamiltonian for-

mulation of dynamics, we can always construct an equivalent first-order Lagrangian for-

mulation whose configuration space coincides with the Hamiltonian phase-space.

In this paper we prove that for dynamical systems described by Hamiltonians of the

type 0 () we can find an equivalent second-order Lagrangian formulation whose con-

figuration space coincides with the Hamiltonian phase-space.
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In this respect we start with a class of Hamiltonians of the form

0 ( ) = 0 ()  (4)

The corresponding Hamilton equations are given by

̇ =
0


 (5)

̇ = −0


 (6)

with

 =  (7)

We choose the initial conditions

 (0) = 0  (0) = 0 (8)

Now, we take the second-order Lagrangian

̄0 (  ̇ ̇) = ̇̇− ̄ ()  (9)

where ̄ () is defined via the relation

̄


= −

µ
0



¶2
 (10)

With the help of (9)—(10) we derive the following second-order Euler—Lagrange equations

̄0


≡ −̈+

µ
0



¶2
 = 0 (11)

̄0


≡ −̈ +

µ
0



¶2
 = 0 (12)

In order to be able to compare the time evolutions described by the Hamilton equations

(5)—(6) and respectively the Euler—Lagrange ones, (11)—(12), we must impose in each

formalism some initial conditions that are mutually compatible. This means that given

the Hamiltonian initial conditions (8), we must take the Lagrangian ones as

 (0) = 0  (0) = 0 (13)

̇ (0) = 0
0


(00)  ̇ (0) = −00


(00)  (14)

Under these considerations, the next theorem represents our main result.

Theorem 1 The (second-order) Euler—Lagrange equations(11)—(12), subject to the initial

conditions (13)—(14), describe the same dynamics like the Hamilton equations (5)—(6) in

the presence of the initial conditions (8), i.e.⎧⎪⎪⎪⎨⎪⎪⎪⎩
−̈+ ¡0



¢2
 = 0

−̈ + ¡0



¢2
 = 0

 (0) = 0  (0) = 0

̇ (0) = 0
0


(00)  ̇ (0) = −0 0


(00) 

⇔
⎧⎨⎩ ̇ = 0




̇ = −0




 (0) = 0  (0) = 0

(15)
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Proof In order to prove the theorem we will explicitly find the solutions to the equa-

tions (11)—(12), subject to the initial conditions (13)—(14), and respectively to the equa-

tions (5)—(6) in the presence of the initial conditions (8).

From (11)—(12) we find the relations


̄0


+ 

̄0


= 2

Ã
̇̇+

µ
0



¶2


!
− ̈ (16)

̇
̄0


+ ̇

̄0


= − 



¡
̇̇+ ̄ ()

¢
 (17)

which prove that if ( ()   ()) are solutions of equations (11)—(12), subject to the initial

conditions (13)—(14), then they are also solutions of equations

̇̇+ ̄ () = −00
µ
0


(00)

¶2
+ ̄ (00)  (18)

̈− 2
Ã
̇̇+

µ
0



¶2


!
= 0 (19)

in the presence of the same initial conditions. Substituting (18) in (19) we infer the

equation

̈− 2
Ãµ

0



¶2
− ̄ ()− 00

µ
0


(00)

¶2
+ ̄ (00)

!
= 0 (20)

The initial conditions (13)—(14) further imply that

 (0) = 00 ̇ (0) = 0 (21)

The solution of equation (20) can be written in the form

 =  +  (22)

where  is the general solution of the homogeneous equation associated with (20), while

 is a particular solution of (20). It is easy to see that

 = 00 (23)

In consequence,  is the solution of the following Cauchy problem(
̈− 2

³¡
0



¢2
− ̄ ()

´
= 0

 (0) = 0 ̇ (0) = 0
(24)

The uniqueness of the solution to the above problem ensures us that

 ≡ 0 (25)

from which we obtain

 = 00 (26)
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On behalf of (26), we easily derive that the solutions of equations (11)—(12), subject to

the initial conditions (13)—(14), are given by

 = 0 exp

µµ
0


(00)

¶
(− 0)

¶
 (27)

 = 0 exp

µ
−
µ
0


(00)

¶
(− 0)

¶
 (28)

On the other hand, from the Hamilton equations (5)—(6) we find the relation




() = 0 (29)

which further leads, taking into account (8), to

 = 00 (30)

By virtue of the last formula we easily deduce that the solutions of the Hamilton equations

(5)—(6) in the presence of the initial conditions (8) are expressed precisely by (27)—(28).

This proves the theorem. ¥
In the context of a class of Hamiltonians of the type (4) the above theorem emphasizes

a new relationship between Lagrangian and Hamiltonian formalisms.

To conclude with, in this paper we have proved that that for dynamical systems

described by Hamiltonians of the type 0 () we can find an equivalent second-order

Lagrangian formulation whose configuration space coincides with the Hamiltonian phase-

space.
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