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Abstract

The paper shows that long memory effects can be included in mathematical

models using fractional calculus. It is analyzed how the memory effects influence

the evolution of a particular dynamical system.
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1 Introduction

The fractional calculus (i.e. calculus of integrals and derivatives of any arbitrary real

order) has gained considerable importance during the past three decades, due mainly to its

applications in diverse and widespread fields of science and engineering. The simultaneous

evolution of the fractal theory and the higher performances of the computers has positively

influenced the development of the fractional calculus from a theoretical point and has

multiplied its applications.

The concept of fractional calculus is not new. The first question was raised in 1695 by

L’Hospital to Gottfried Leibniz ([1], preface) about the derivative of order 12. Mention

of the fractional derivatives (as an open problem) was made by Euler (1730), Lagrange

(1772), Laplace (1812), Lacroix (1819), Fourier (1822). The first systematic results were

obtained by J. Liouville in 1832 [2] and continued by B. Riemann [3]. The first work

devoted exclusively to the subject of fractional calculus was published in 1974 [4]. From

that moment many monographs dedicated to this subject were published (for example

[5]-[7]).

The fractional derivatives are defined using integrals, so they are non-local operators.

The fractional derivative in time contains information about the function at earlier points,

so it possess a memory effect. The fractional derivative in space includes non-local spatial

effects, Levy flights for example.

Because of their non-local property fractional derivatives can be used to construct

simple material models and unified principles. They have important applications in as-

trophysics [8], economics [9], fusion plasmas [10]-[13], mechanics [14]-[15], viscoelasticity

[16]

In this paper we are interested to show how long memory effects can be incorporated

in mathematical models using fractional calculus.

2 Fractional derivatives and memory effect

The fractional calculus is an extension of classical calculus for non-integer order of deriva-

tion. More than one way to transfer integer-order operations to the non-integer case was
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developed. There are at least three important definitions for fractional derivatives. We

can speak about Riemann-Liouville, Caputo and Grunwald-Letnikov fractional derivatives

of a function. Because we are interested in presenting the influence of the memory effect

we will consider only left derivatives of functions depending on time, i.e.  =  () 

Definition 1 For  ∈ 1 ([ ]) the left Riemann-Liouville derivative,

+ : [ ] → R

of order  ∈ [− 1 ) is defined by


+ () =

1

Γ (− )

µ
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¶() Z
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−+1 (1)

The left Caputo-derivative 
+ : [ ]→ R of order  ∈ (− 1 ] is defined by
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The left Grunwald-Letnikov derivative + : [ ]→ R of order  is defined by

+ () = lim
→0

P
=0
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where  =
£
−


¤


Some preliminary definitions of what we call now "fractional Riemann-Liouville" deriv-

atives were proposed in the middle of XIX-th century in a sequence of papers of J. Liouville

and G. F. B. Riemann.

In 1869 N.Y. Sonin gave a compact form to these definitions extending the Cauchy’s

integral formula for integer order derivatives to arbitrary   0 [17], but their actual form

(1) was given in 1884 by H. Laurent [18].

The main objections in using this derivative are: the fractional derivative of a constant

is not 0 when  ∈ N (which leads to many complications in usual computations) and it

is not compatible with the Laplace transform (i.e. the usual formula for
¡
()

¢
() is not

verified for  ∈ N).
In 1967 M. Caputo proposed the definition (2) which avoided these disadvantages [19].

The Caputo fractional derivative is today frequently used in applications, especially for

linear differential equations that can be solved using the Laplace transform .

The Caputo fractional derivative is strongly connected to the Riemann-Liouville frac-

tional derivative because¡


+
¢
() =

¡
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+
¢
() +

−1X
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1

Γ (1 +  − )
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  ∈ (− 1 ) 

It is also interesting to point out that

() () =
¡


+
¢
() =

¡


+
¢
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The Grunwald-Letnikov fractional derivatives, introduced in [20] [21] are very impor-

tant now from numerical point of view. In fact the finite Grunwald-Letnikov derivative
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Figure 1: Including long range memory effect through fractional temporal derivatives (top

of the figure) and classical short memory effect through classical temporal derivative of

order I (bottom of the figure)

is an approximation of the first order of the Riemann-Liouville derivative iff  (0) = 0,

because [22] ¡



+

¢
() =

¡


+
¢
() + () + ( (0)) 

From the previous relation one can notice that, iff  (0) = 0,¡
+
¢
() =

¡


+
¢
() 

Because the analytical computation of Riemann-Liouville or Caputo fractional deriv-

atives is difficult, quite impossible in many cases, their numerical approximation is very

useful. For this reason efficient algorithms for numerically solving fractional differential

equations were elaborated. Part of them use the Grunwald-Letnikov derivatives [22].

The consideration of memory effect in the computation of fractional derivatives is

evident if we look the formula (4). If  ∈ N, for a fixed initial moment 0 and a step
time ∆ = , the fractional G-L derivative

¡



+

¢
(0 + ) takes into account all the

values  (0),  (0 + ),  (0 + 2), ..., (0 + (− 1)),  (0 + ). When we compute

0 (0 + ) ≈ (0+)−(0+(−1))


, we take into account only the last two values in the

previous sequence, so the memory effect it not present.

This observation is graphically pointed out in figure 1

In computing the fractional G-L derivative the "memory-interval" is important.

For exemplification, we plotted in figure 2 the derivative of order  = 05 of the function

 () = sin  , starting from various initial moments 0 The fractional derivative is defined

on the interval (0 4]. In figure 2 are presented the graphs of the derivatives staring from

0 = 0 , 0 = 2, 0 = , 0 = 2, respectively 0 = 3
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Figure 2: Left Grunwald-Letnikov derivatives of  () = sin  on various memory intervals

In figure 3 we draw fractional derivatives 0+ for  () = sin , 0 = 0 and  ∈
{0 01 02  09 1}. The graph of 00+ ≡  is the continuous black line, the two dashed

black lines correspond to 050+, respectively 
1
0+ and the other lines are the graphs of frac-

tional derivatives for intermediate values of . In this case Riemann-Liouville, Caputo

and Grunwald-Letnikov derivatives of the same order coincide because  (0) = 0

3 Fractional models including memory effects

In order to observe the influence of the memory effect on the equation of forced pendulum

with friction we consider the problem

00 () + 0 () +  () = 8  (0) = 0 0 (0) = 5 (5)

We can consider the memory effects by changing the previous equation with its "fractional

version" which is generated supposing that the friction only is memory-dependent:

00 () +
¡

0+
¢
() +  () = 8  (0) = 0 0 (0) = 5 (6)

The first derivative 0 () from (5) was replaced by the derivative of order  with  ∈ (0 1) 
Both problems (5) and (6) may be solved using Laplace transform. In (6) we observe

that the Riemann-Liouville derivative coincide with the Caputo and with the Grunwald-

Letnikov derivatives, because  ∈ (0 1) and  (0) = 0.

In this case one can use the relations


¡

0+
¢
() =  () ()
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Figure 3: Left Grunwald-Letnikov derivatives of different orders for  : [0 ],  () = sin

µ
−1

−1

 − 1
¶
() = 1 =

∞X
=0



Γ (+ 1)

but the analytical expression of the solution is very complicate, involving Mittag-Lefler

functions.

In this situation the numerical approximation of the solution is appropriate. For

this purpose we used the numerical method described in [23], based on finite Grunwald-

Letnikov derivative.

The graphs of the solutions on the interval [0 10] are plotted in figure4 for  = 05

(continuous line),  = 099 (dashed line), respectively  = 1 (dot-dashed line).

Numerical simulations show that, for short period of initial time,  ∈ [1 10], the solution
of (6) with different orders of fractional derivatives does not converge to the solution of

(5), that is for → 1. It means that the evolution of the system is deeply affected by the

memory effects.

4 Conclusions

In this paper we analyzed the memory effects induced to a dynamical system when an

evolution described through a fractional differential equation is considered. By the general

definition (3), the fractional derivative supposes memory effects because of its dependence

on many time moments.

For the particular example of 1 forced pendulumwith friction, model described by (6),

the influence of the memory effects on the dynamics were pointed out. It was shown that

the evolution of the system is different in the first decade of time, depending on the order

of the fractional derivative. In Figure 4 three different evolutions are represented. Two of
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Figure 4: Solution of (6) for  = 05,  = 099,  = 1

them correspond to the fractional derivatives of order  = 0 5 respectively  = 0 99. The

third graph in the same figure, corresponding to the value  = 1, describes the evolution

of the system under the action of a first order derivative friction force. It is clear that

this last graph does not represent the limit → 1 of the first two graphs. These different

looking oscillations are known as memory effects. After a longer time, the evolutions of

the two systems become identical.
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