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Abstract

This paper is devoted to the study of some mapping models for the study of

magnetic configurations in tokamaks which exhibit non-axisymmetric MHD or RMP

perturbations. The destruction of a transport barrier is described using the trans-

missivity between the chaotic zones situated of its both sides.

1 Introduction

Many important models in astronomy, plasma physics, fluid dynamics and mechanics

are one-degree-of-freedom Hamiltonian systems subjected to time periodic perturbations.

Such models, corresponding to specific Hamiltonians and interpretation of action-angle

variables, are successfully used for the study of transport and mixing in the ocean and

atmosphere [1]-[2], of chaotic ray propagation in deep sea [3],of propagation of the pressure

waves in pulsating stars of low mass [4], of magnetic configurations of hot plasma physics

devices, such as tokamaks [5]-[7] etc.

In their study, a special attention was given to the existence of invariant surfaces (tori)

because they can not be crossed by the orbits of the system, so they act as barriers which

separate invariant zones of the space. In the unperturbed system every orbit lives on an

invariant torus and the dynamics of the (integrable) system is regular. The complicate

dynamics of the perturbed systems is partially due to the destruction of the barriers, which

enables the orbit to wander in a larger zone of the phase space. This separation is very

important in many phenomena: for transport and mixing in the ocean and atmosphere,

these barriers give rise to the creation of ’ozone holes’ since they isolate the ozone created

in the tropics from Earth’s polar regions [1]-[2], the chaotic ray propagation in deep sea and

the propagation of the pressure waves in pulsating stars of low mass are also prevented by

the existence of a transport barrier [3]-[4]. In magnetic confinement fusion, the existence

of internal transport barriers in the magnetic configurations of hot plasma physics devices,

such as tokamaks, may be viewed as a fundamental prerequisite for the confinement of

charged particles.

The Hamiltonian, written in action-angle variables ( ) is  : 1 × × [0∞)→ R

 (  ) = 0 () +  · (  ) (1)
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where 1 denotes the circle R (2Z),  ⊂ R is the definition domain of the action

variable , and  (  ) =  (  +  ) for a given time period  ∈ R+for all

 ∈ [0∞).
The associated Hamiltonian system is½



=  0

0 () +  · 




= −



(2)

The systems (2), known as 1 1
2
degrees of freedom Hamiltonian systems, are generically

non-integrable. Their typical dynamics is not entirely regular (periodic orbits or quasi-

periodic orbits lying on invariant tori) nor entirely chaotic (the chaotic orbits densely fill

regions with positive measure in the phase space but not the whole space). Both dynami-

cal regimes are connected in a complicate layer where regular and chaotic motion can not

mix.

It is widely accepted that the essential aspects of the dynamics of such system are

captured by the discrete dynamical system generated by the stroboscopic map with the

stroboscopic time, i.e. the shift operator by time  ,  : 
1 ×→ 1 ×R

 ( (0)   (0)) = ( ( )   ( ))

It generates a two dimensional discrete dynamical system

(+1 +1) =  ( )

where ( ) = ( ( )   ( )). The discrete orbit of (0 0) = ( (0)  (0)) is obtained

by recording the coordinates of its trajectory at times  , 2 , 3 ,...

In [7] it is shown that the stroboscopic map is a particular case of Poincaré map,

adapted to the particular characteristics of 1 1
2
degrees of freedom Hamiltonian systems

with periodic perturbation. In this way, the complex behavior of 1 1
2
degrees of freedom

Hamiltonian systems can be understood by studying area preserving maps, which are

relatively simpler mathematical objects than differential equations.

The aim of this paper is to study some realistic magnetic configurations in tokamaks

using discrete Hamiltonian models obtained by mapping techniques which are based on

Hamilton-Jacobi theory. In this case the equations of the magnetic field lines can be cast

in Hamiltonian form (2), where the action is the toroidal magnetic flux  conjugated to

the polar angle  and the toroidal angle  plays the role of time. The Hamiltonian  is

the poloidal magnetic flux and  0
0 ()


=  () is the winding function, the inverse

of the safety factor  (). The term  ·  (  ) describes the effect of magnetic

perturbations. In our study we focus on the description of the chaotic dynamics and

on the formation/destruction of the internal transport barriers because the existence of

magnetic transport barriers is essential in the confinement of plasma (it prevents the large

radial displacement of the charged particles).

The paper is structured as follows: in Section 2 the mapping techniques are described

; two models of the magnetic field lines in tokamaks are obtained in Section 3; Section 4

is devoted to the study of the model corresponding to MHD perturbations and the results

are summarized in Section 5.
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2 General mapping models

The exact Poincare map can not be always analytically determined because this is equiva-

lent to solving analytically the system. Usually it is approximated using various techniques.

There are two philosophically different ways to obtain approximations of the stroboscopic

map: by performing a numerical integration with small step or by using the mapping

techniques with large step.

In order to obtain a correct approximation of the stroboscopic map by numerical in-

tegration one must use a symplectic integrator, because the standard numerical methods

introduce non-Hamiltonian perturbations that lead to a completely different long-time

behavior [8]. The main goal of mapping models is to replace the Poincare maps of the

original system by iterative maps. The maps are constructed in the symplectic form, hence

they preserve the most important property of the original system. They run much faster

than the small step numerical integration, but the main advantage is that the mapping

models have better accuracy in the study of the chaotic dynamics due to the fact that the

accumulation of the round-off errors is reduced. The general mapping technique used for

obtaining good approximations of the stroboscopic map is based on the Hamilton-Jacobi

method [9].

For the Hamiltonian, having time-periodic perturbation with the period 2,

 (  ) = 0 () +
X


 · () cos ( − )

the Hamilton-Jacobi map, with the step ∆ = 2

is (see [9]):

 : [0 2)× [0∞)× [0 2)→ [0 2)× [0∞)× [0 2)
given by:

 :

⎧⎨⎩
 = + 2

 =
¡
 + 2


· () +  


( ) +  



¡
 

¢¢
(mod 2)

 =  − 

( )− 



¡
 

¢ (3)

where  is the (unique) solution of the equation

 =  − 



( )  (4)

The generating function  , involved in (3),(4), is defined by

 ( ) =




X


 () [ () sin ( − ) +  () cos ( − )] (5)

where

 () =
1− cos


;  () =

sin


  =




( · ()− )  (6)

In order to compute  (  ) one must solve two (usually complicate) implicit

equations: eq 4 and the second eq. in the system 3.

It is proved that  is a performing integrator, even if the integration step is quite

large [9].

In this case, the Poincare map corresponding to a Poincare section () :  = 0 is
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 : ()→ ()  ( ) =

Ã
 ◦ ◦  ◦| {z }

 

!
( ) (7)

The Hamilton-Jacobi map may be used when  has a finite (small) number of natural

values.

When the Hamiltonian perturbation is the sum of infinitely many term, i.e.

 (  ) = 0 () + 
X
∈M

 () cos ()

∞X
=−∞

cos ( · · )

where M is a finite set and  ∈ N is fixed, the Hamilton-Jacobi map has a simpler

form, called the symmetric map (see [9]):

 : [0 2)× [0∞)× [0 2)→ [0 2)× [0∞)× [0 2)

 :

⎧⎨⎩
 =  + 2 ( · )
 =  + 2


 () +  


() +  



¡


¢
 =  − 


()− 



¡


¢ (8)

where the generating function is

 ( ) =




X


 () cos () (9)

and  is the (unique) solution of the implicit equation

 =  − 



() (10)

The mapping step is ∆ = 2

, so the Poincare map corresponding to a Poincare

section () :  = 0 is

 : ()→ ()   ( ) =

Ã
 ◦ ◦  ◦| {z }

 

!
( )

3 Magnetic maps

In order to describe some magnetic configurations that may be encountered in tokamaks

(toroidal devices used for obtaining the thermo-controlled nuclear fusion) one can use the

Hamiltonian description [7].

Because the tokamaks are toroidal devices, it is natural to use toroidal coordinates

(  )in order to describe the magnetic field ( is the toroidal angle and ( ) are the

poloidal coordinates in a circular poloidal section). Instead of the poloidal radius , the

toroidal flux  = 22 is commonly used because  and  represent a pair of canonical

variables [6].

The Hamiltonian system obtained from the equations of the magnetic field by using

the Clebsh representation. The Hamiltonian of the system is the poloidal magnetic field

 (  ) = 0 () +  · (  ) 
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The unperturbed Hamiltonian, 0 () =
R



()
=
R
 () , is the poloidal flux of

the equilibrium plasma and the effect of magnetic perturbations is contained in the term

 · (  ).

In this case  represent the action variable and the toroidal angle  is interpreted in

analogy with a “time variable”.

The “time” section , () :  = 0 is a vertical poloidal section of the device, i.e.

() = 1 × [0∞). The physical relevant interval for  is [0 1].
In this case, the mapping models (3)-(6) and (8)-(10) have an important physical

interpretation: the pair ( ) indicates the re-intersection of the magnetic field line

with () after toroidal  turns.

Realistic models requires knowledge of the safety factor and of the magnetic perturba-

tions. Determination of these quantities from the experiment is a challenging task, because

of the large uncertainties in the measurements.

3.1 The safety factor

The safety factor  () is determined by the radial distribution of the plasma current

density  () while full radial, poloidal and toroidal values of  (  ) are required for

a precise knowledge of the magnetic topology. In experiments the safety factor can be

derived from the observation of large striations observed during the ablation of injected

hydrogen (deuterium) pellets [10].

The safety factor can be analytically obtained from the magneto-hydrodynamic theory

[11], or from equilibrium code calculations, taking into account the position of the MHD

modes identified in experiments.

In our examples we will use the safety factor derived in [11], namely

 () =
4

 (2− )
¡
2− 2 + 2

¢ ; (11)

For the safety factor (11) , with  = 1, the values of the main  (where the modes

() are situated in the unperturbed system) are:

43 = 0189464; 21 = 0456311; 52 = 0610635; 31 = 0746923; 72 = 0874785;

113 = 0916622; 154 = 0937485; 195 = 0949994; 236 = 0958330; 277 = 0964284;

In Figure 1 the position of the main () modes is presented.

3.2 MHD perturbations

The magnetic perturbations are due to plasma instabilities (MHD-perturbations) or the

addition of internal or external magnetic fields usually created by external applied electric

currents (RMP- perturbations).

The MHD-perturbations (magnetohydrodynamic perturbations) corresponding to the

() mode reads

 · () cos ( −  + )

where  are the poloidal and toroidal number,  and  are the amplitude and the

phases of the ()-MHD mode. The winding number is  () = , i.e.  () =

 which means that the mode () is resonant at magnetic surface  = 
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Figure 1: The position of the main (m,n) modes for the safety factor  () =

4
¡
(2− )

¡
2− 2 + 2

¢¢
In what follows we will use the MHD-perturbation proposed in [13]:

 =




"
()

1∆
+ ()

−1∆

2

#−∆2

 (12)

The profile of MHD mode correctly describes the behavior near the resonant surfaces

and it is in agreement with the parametrization proposed in [14], [12]

The MHD perturbations corresponding to (4 3), (7 2)  (27 7) can be seen in Figure 2

The internal magnetic perturbations which contains several () modes is

 · (  ) =
X


 · () cos ( − )

Remark 1 In the Poincare section  = 0, the perturbation  () · cos () has local

extrema in ( ) =
¡


 

¢
, for  ∈ {0 1 2− 1}

The system generated by the Hamilton-Jacobi map (3), (4)-(6), corresponding to the

safety factor (11) and the magnetic perturbations (12) and the step ∆ = 2 will be called

in the following sections "the MDH-model".

3.3 RMP-perturbations

There are also other important magnetic pertubations, namely those created by external

saddle coils which are typically toroidally distributed inside or outside of a plasma vacuum

vessel. The resonant magnetic perturbations (RMPs) created by these coils are non-

axissymmetric along the poloidal and toroidal directions. Their effect is determined by
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Figure 2: The MHD-perturbations corresponding to (4 3), (7 2), (27 7).

the main () component of the Fourier expansion. For this reason, the saddle coils are

designed to create a mode () with a fixed toroidal mode "".

For fixed  ,  ∈ N, the general form of the perturbations having a broad spectrum

near the separatrix is

 · (  ) = 
X


 () cos

∞X
=−∞

cos ( · · )

= 
X


 ()

∞X
=0

cos ( −  · · )

. The simplest asymptotical form of  was found using its relation with the generalized

Poincare integral ( [13], [15], [16]):

 () =




− ()

·() 

where  () is an analytical function with a finite value in  = 1, which can be

established from code calculations. In [13]  () was chosen in the form

 () = 0 − 1
2
 ·  () · ln

In this case we have

 () =



· 2 · −·0·· () (13)

depends on the constants 0 and , which can be founded from the equilibrium calculations

or from experiment (see [13]).
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Figure 3: RMPs corresponding to  () = 4
¡
(2− )

¡
2− 2 + 2

¢¢
and 0 = 007,

 = 021

Two RMP-perturbation, corresponding to the safety factor (11), 0 = 7·10−2,  = 021
are drawn in Figure 3 .

The system generated by the symmetric map (8)-(10), corresponding to the safety

factor (11) and the magnetic perturbations (13) and the step ∆ = 2 will be called in

the following sections "the RMP-model".

4 Stochasticity in MHD-model

In MHD model, even for very small amplitudes of more than one active MHD perturba-

tion, one obtains chaotic behavior. This is due to the overlapping of stable and unstable

manifolds of hyperbolic periodic points.

The perturbation corresponding to the simultaneous activation of (2 1), (5 2), (3 1)

and (7 2) modes, with the amplitudes 21 = 0003, 52 = 0001, 31 = 0002 respectively

72 = 00005 is presented in Figure 4.

TheMHD-perturbation is symmetric to the line  =  and its largest values are situated

on the line  = 0

In this case

¯̄̄̄P


 () cos ( − )

¯̄̄̄
≤ 00026 , less than 07% of the unper-

turbed Hamiltonian, however the influence of MHD-perturbation on the configuration of

magnetic field lines is remarkable.

In figure 5 is presented the phase-portrait of MHD-model where a chaotic dynamics

is obtained through the activation of (2 1), (5 2), (3 1) and (7 2) modes. In the picture

one can observe islands of two, five, three, respectively seven islands, corresponding to the

excited modes.
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Figure 4: MHD perturbations when (2 1), (5 2), (3 1) and (7 2) modes are simultanous

activated

Figure 5: Chaotic orbit, when (2 1), (5 2), (3 1) and (7 2) modes are simultaneously

activated
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Figure 6: The variation of  (top) and  (bottom) along the orbit of (0 0) = (15 049)

The chaotic orbits pass through destroyed KAM barriers and surround all islands

(Figure 6). This fact becomes evident if we look the variation of . The orbit starts near

the hyperbolic point of (2 1) type, it encircles the chain of two islands (zone 1 in Figure

6) then it jumps near the (7 2) mode and moves around the islands (zone 1 in Figure 6).

It spend some time around (5 2) mode (zone 1 in Figure 6), then it oscillated between

the (7 2) and (3 1) modes (zone 1 in Figure 6). It comes back near (5 2) mode (zone

2 in Figure 6), moves back near (7 2) and (3 1) modes (zone 2 in Figure 6) and so on.

The distribution of  (bottom in figure 6) shows that the points of the orbits are

uniformly spread in the poloidal section. In some zones, for example in the middle of zone

1 one can observe some "steps"( a thin zone appears in the corresponding part of Figure

6, top ). It means that the points of the orbits are very close to the hyperbolic points

(of type (8 3) which are situated between (5 2) and (3 1) island chains, in our example).

The sojourn times near various modes are different and non-uniformly distributed along

the orbit.

There are not transport barriers inside the chaotic zone.

In order to study the formation of the transport barriers, we observe that the MHD-

model is a twist system, because the winding function (11) is monotonous. In this case

it results from KAM theory [17] that the internal transport barriers are invariant curves

(corresponding to invariant surfaces in tokamak) which can not be crossed by the magnetic

field lines. A rigorous study of the formation/destruction of transport barrier, based on

Aubray-Mather theory [18] or on Greene’s criterion [19], is impossible in our case, due

to the complicate form of the MHD-map, whose values are obtained numerically (when

the implicit equations are numerically solved). For this reason we will use a numerical

experiment based on the computation of the transmissivity [20].

First of all we must observe that a transport barrier can be built by decreasing the

magnetic perturbations’ amplitudes (in this case the stable unstable manifolds of different

modes do not overlap) or by modifying the safety factor in order to create a low shear
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Figure 7: The transmissivity for 52 = 0001, 31 = 0002, 72 = 00005 and various values

of 21

zone (in this case the map which generate the system is close to an integrable one).

In the present study we focus on the modification of the magnetic perturbations. We

consider 52 = 0001, 31 = 0002 respectively 72 = 00005 to be the amplitudes of the

perturbations corresponding to (5 2), (3 1) and (7 2) modes (as in figure 5 and we vary

21.

In order to observe the existence of a transport barrier between (2 1) and (5 2) modes

and to investigate the diffusion across the barrier after its break-up we compute the trans-

missivity [20], defined as the fraction of orbits of fixed length, starting from the line

 = 21 which arrive in the vicinity of (5 2) mode.

In order to compute the transmissivity, we placed  = 62800 equally distanced initial

conditions on the line  = 21 = 0456311, and we considered their orbits of length  =

104 An orbit arrives in the vicinity of (5 2) mode when it crosses the line 52 = 0610635.

The main results are presented in figure 7. The abscises of the red stars represent the

values of 21 for which the transmissivity was computed, the black line corresponds to

data’s linear interpolation.

We conclude that a transport barrier exists between (2 1) and (5 2) modes when

21 = 00018 because  (00018) = 0.

This barrier is just broken for 21 = 00019 because the transmissivity  (00019) =

00094 is strictly positive but small (just a few orbits cross the broken barrier). When 21
increases, the gaps in the broken barrier become larger, more and more orbits traverse it

and the transmissivity increases.
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5 Conclusions

Realistic models to the study the turbulence of magnetic configurations in tokamaks can be

obtained using MHD-perturbations. In such models, the chaotic behavior is explained by

the overlaps of stable and unstable manifolds of various modes, when they are simultane-

ously activated. We studied the destruction of a transport barrier using the transmissivity

between the chaotic zones situated on its two sides. We obtained numerically the values

of the perturbations’ amplitudes for which the barrier is broken.
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