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Abstract

For area preserving maps we introduce an operator whose spectrum give the
classical rotation numbers or generalised rotation numbers in chaotic sea. We prove
that some classical properties of rotation number survive as properties of this new
operator.

1 Introduction

Magnetically confined controlled fusion devices, cyclic particle accelerators, storage rings,
Saturn ring system are only few examples of man made or natural many particle physical
systems with increased predictability of the statistical evolution. The increased pre-
dictability is a result either of sophisticated technological effort or by ”natural selection”.
As a results, the mathematical models of these systems are very close to the integrable
Hamiltonian systems and have a very complicated phase space structure and complex
time behavior. Even if we restrict ourselves to smallest invariant components, there are
models [1] which are only weakly mixing. It is well known that the absence of mixing
prevents the relaxation to equilibrium distribution [2], [3], [4].
The general study of generic, non-integrable Hamiltonian systems is too complicated,

even from numerical point of view. Consequently even in the classical mechanics we are
lead to the idea to give up the ambition to study of individual trajectories and concentrate
only on the long time behavior statistical properties of the families of trajectories whose
initial conditions are not too sharply localized. This old statistical (metric) approach has
some general similarities with differentiable dynamics [5].
Translated in the terminology of statistical physics, we restrict our study to the infinite

time behavior of mean values, arising from initial conditions given by non-singular prob-
ability density functions (PDF). Both in statistical mechanics [2], [6] and ergodic theory
[3],[4], exist a suitable Hilbert space approach. In this approach a central role plays the
projector on the invariant PDF. The existence of this projector is given by von Neumann
mean ergodic theorem [3],[4].
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In both these approaches the PDF is assumed square integrable relative to the invariant
(in many interesting cases Liouville) measure. Remark that for systems of finite measure
square integrability implies integrability. The methods of kinetic theory, in particular the
possibility of Markovian approximation, combined with the ergodic theory methods was
used in the study of very chaotic regime of the standard map in [7] (references therein).
The case of nearly integrable case, the so called weekly stochastic regime of the standard
map, was also investigated [8].
Despite of huge complexity of the phase space portrait there are lot of regularities

which must be explained and correlated. A central role play the set of invariants, the
rotation numbers.
Winding or rotation numbers and related safety factor, rotational transform, play an

important role and its applications in magnetic field line dynamics in controlled fusion [9],
[10], [11], [12], [13] and in fundamental problems of classical Hamiltonian dynamics [14],
[3]. The rotation numbers, are well defined for periodic orbits, island chains, cantories,
invariant circles. Nevertheless the rotation numbers was not defined globally. The main
obstacle is because in the chaotic sea, generically there exist a denumerable dense set
of periodic points chains, with different rotation numbers. Other category of counter
example is presented in [14].
By our statistical or Hilbert space approach, this gap is filled. We will associate to

our physical system, modelled, for sake of simplicity by area preserving map, a whole
family of invariant mathematical objects: operators and functions, which generalizes the
classical rotation numbers. We will explore how the classical properties of the rotation
number can be generalized and how to compute.
Our approach is close to [15], where the mean angular velocity of an infinitesimal vector

is defined in statistical sense. Our definition will be a natural extension of definitions used
in Hamiltonian dynamics and tokamak physics.

2 Preliminaries

Suppose that the topology of the phase space of the systems under investigation is similar
to the structure of integrable systems.
For simplicity, we consider area-preserving maps

T : xn = (pn, qn) −→ xn+1 = (pn+1, qn+1) = T(pn, qn)

obtained from integration of time periodic Hamiltonian system.
More explicitly qn+1 = qn + a(pn, qn) and suppose that a(p, q) = a(x) (called angular

function [20]) is periodic in q and continuous. Suppose also that the Hamilton function is
periodic in q and by integration we obtained the true value, not only the fractional part,
of the angular function. Under these conditions we can consider the map T acting on the
cylinder C = S1 × R . Suppose for technical reasons that there is sub-domain D of the
cylinder C which is invariant under T, limited by two invariant circles. The cyclic, angle
variables q, are supposed to be normalized to 1.
All of our results can be extended easily to many degrees of freedom Hamiltonian

systems, discrete or continuous time, even subjected to random perturbations.
If we measure the angle by another variable Q, related to the old variable by Q =

q + s(p, q) where s(p, q) is continuous and periodic in q then Qn+1 = Qn +A(pn, qn) and
the new, re-parametrized angular function is given by
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A(x) = a(x) + s(T(x))− s(x) (1)

The case of general Hamiltonian maps can be treated in similar manner. Consider the
standard Hilbert space H = L2(D, dpdq), of the square integrable functions in D, with
the scalar product:

hϕ,ψi =
Z
D

ϕ∗(x).ψ(x)dpdq (2)

The unitary Koopman operator U formalizes the unit time evolution of observable, like
coordinates and their functions. The action over a vector, is defined by

Uψ(x) = ψ(T(x)) (3)

The adjoint U+ is the unit time evolution operator for probability or particle density
functions. To any bounded and continuous function b(x) in we associate a bounded
multiplication operator b defined by

(bψ)(x) = b(x).ψ(x) (4)

If b0 is the operator defined by

(b0ψ)(x) = b(T(x)).ψ(x)

then
b0 = UbU−1 (5)

Denote by a , A and s the multiplication operators associated to a(x) and A(x) and s(x).
Then 1 can be rewritten as

A = a+UsU−1−s (6)

Denote by Hinv, the subspace of H spanned by the invariant vectors, under the action of
U and by H⊥ its ortogonal complement. By definition, ψ ∈ Hinv if and only if Uψ = ψ
, or ψ(T(x)) = ψ(x). Denote by P , the projector over Hinv . By von Neumann mean
ergodic theorem P is given by [3], [4]

Pψ = lim
N→∞

1

N

N−1X
k=0

Ukψ = lim
N→∞

1

N

N−1X
k=0

U−kψ (7)

and both limits exists for all ψ ∈ H, understood as Hilbert space limits. In similar manner
we introduce the projector P(n) which projects on the subspace of functions invariants
under Un.
Clearly

P(n)U±n= U±nP(n)= P(n) = P(−n) (8)

P , P(1) = 1

|n|

|n|−1X
k=0

UkP(n)

and P(n) U = UP(n).
From the definition of P(n) results the following simple relation
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P(n)P(m) = P(d)

where d is the greatest common divisor of positive integers m and n.
The projector P itself is very interesting for statistical studies of Hamiltonian systems.

Suppose that ρ(x) is a (square integrable) particle density function, then U−tρ gives it
time evolution hf,U−tρi is the phase-space average at time t of the function f(x) . So
hf,Pρi is the phase space and time average of the function f (x), which is well defined,
irrespective on the existence of equilibrium state. For instance if f(x) is equal to the
characteristic function of a sub domain, then hf,Pρi is the mean visiting frequency. For
continuous time systems we must only replace the summation by integral.
The matrix elements hf,Pρi of the projector P can be computed if we can compute

the diagonal elements hψ,Pψi. We need the following

Lemma 1 [4]: Any χ ∈ H⊥ can be approximated to any precision ε by vectors of the
form χε = (U− 1)gε, where gε is a vector from H.

Then we can prove the following variational principle.

Proposition 2 The matrix elements hψ,Pψi are given by

hψ,Pψi = inf
g∈H

kψ − (U− 1)gk2 (9)

Proof. hψ,Pψi = kPψk2 = infχ∈H⊥ kψ − χk2. Then by previous lemma we obtain 9.

Remark 1 From the previous proposition we can obtain the following result for general
autonomous Hamiltonian systems, considered as limiting case of discrete time systems:

hψ,Pψi = inf
g∈Hd

kψ − {H, g}k2

Proposition 3 where H is the Hamilton function and Hd is the subspace of continuously
differentiable functions, {H, g} is the Poisson bracket.

3 Generalized rotation numbers, algebraic properties

We define our basic operator Ω by

Ω = PaP (10)

It is invariant under re-parametrization. Indeed, from 1 we obtain

A = a+UsU−1−s

and if we define the re-parametrized operator Ω0= PAP from 8 results Ω0= Ω.
Its action on invariant function ψ(x) ∈ Hinv is gives another invariant function ψ0 =

Ωψ ∈ Hinv given by

ψ0(x) = lim
N→∞

1

N

N−1X
k=0

a(T(k)(x))ψ(x) (11)
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Here T(k)(x) is the k− th iterate of the map T(x). Thus the restriction of Ω1 to Hinv

defines an invariant, bounded almost everywhere (a.e.) function ω(p, q) = ω1(x), given
by

ω(x) = lim
N→∞

1

N

N−1X
k=0

a(T(k)(x)) (12)

The limits in 7, 11, 12 exists a.e.. The invariant function ω1(x) is constant a.e. in
the ergodic components of the chaotic domain. If x belongs to invariant circles, then the
limit always exists and equals to the classical rotation number. Observe that even if the
map T satisfies the twist condition, the function ω1(x) is not necessarily monotone with
respect to variation of p. Clearly ω1(x) is invariant under angular re-parametrization.
I a similar manner if we replaceT byT(n) the corresponding angular function a(n)(x) =Pn−1

k=0 a(T
(k)(x)) for n > 0 , a−1(x) = −a1(T(−1)(x)) and we define

Ω(n)= P(n)a(n)P(n)

We have Ω(n)U±n = U±nΩ(n) = Ω(n) and

Ω(n)U = UΩ(n) (13)

The corresponding ω(n)(x) function, invariant under T(n), due to 13 is invariant also under
T : ω(n)(x) = ω(n)(T(x)) and from 12 we obtain

ω(n)(x) = nω(1)(x)

for all n (T(0)(x) = x). This is a remnant of the corresponding property of the classical
rotation number. Moreover, by simple algebra we obtain:

nΩ = Ω(n) 1

|n|

|n|−1X
k=0

Uk

In the case of systems with many degree of freedom we can define a whole algebra of
rotation number operators and functions with respect to periodic points of different peri-
odicity.

4 Continuity

4.1 Reduction to the continuity of projectors

In the classical case, small modification of the map produces small variations of the
rotation number [16]. In our general case the situation is more complicated. Suppose
there is a family of maps Tξ, depending on the parameter ξ and approximating the map
T = T0. Denote by Uξ , Pξ and Ωξ the associated Koopman operators, projectors and
rotation number operators. We say that Tξ → T = T0 if for every ψ ∈ H we have
k(Uξ −U)ψk → 0 when ξ → 0 (strong convergence of Uξ) [17][18]). We will suppose
moreover that associated angular functions aξ converges uniformly to a, consequently

lim
ξ→0

kaξ − ak = 0 (14)

In these conditions we have the following
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Lemma 4 If for some ψ ∈ H we have limξ→0 k(Pξ −P)ψk = 0 (strong convergence of
Pξ) then for every ψ,ϕ ∈ H , Ωξ converges weakly to Ω , i.e. limξ→0hϕ, (Ωξ −Ω)ψi = 0.

By linearity it is sufficient to proof the four diagonal matrix elements. Suppose kψk = 1
for simplicity. We obtain, by 10 we obtain

hψ,Ωξψi = hψ,PξaξPξψi = hψ,Pξ(aξ − a)Pξψi+ hψ,PξaPξψi (15)

the first term vanishes in the limit ξ → 0 because 14¯̄̄
hψ,Pξ(aξ − a)Pξψi

¯̄̄
≤ kaξ − ak kPξψk2 ≤ kaξ − ak (16)

The second term from 15 can be rewritten as

hψ,PξaPξψi = hψ,Pξ(a+mI)Pξψi−mhψ,PξPξψi (17)

where the constant m was chosen such that (a+mI) > 0. Denoting (a+mI) = r2 from 15
and 17 we obtain

lim
ξ→0
hψ, (Ωξ −Ω)ψi = lim

ξ→0

£
hψ,Pξr

2Pξψi− hψ,Pr2Pψi
¤
−m lim

ξ→0
hψ, (Pξ −P)ψi (18)

The second limit is zero because |hψ, (Pξ −P)ψi| ≤ k(Pξ −P)ψk. For the first term we
obtain

¯̄
hψ,Pξr

2Pξψi− hψ,Pr2Pψi
¯̄
=
¯̄
krPξψk2 − krPψk2

¯̄
≤ K

°°°r(Pξ −P)ψ
°°° (19)

where K is a constant with krPξψk+ krPψk ≤ K. Consequently from 19 we obtain

lim
ξ→0

|hψ, (Ωξ −Ω)ψi| ≤ K lim
ξ→0

°°°r(Pξ −P)ψ
°°° ≤ K krk lim

ξ→0

°°°(Pξ −P)ψ
°°° = 0

which completes the proof.

4.2 Some general continuity results

Remains to investigate the limit limξ→0 k(Pξ −P)ψk. The following result is valid for
general, abstract dynamically systems. We consider a general abstract, discrete dynamic
system (M,A, μ,T) where M is the phase space, with its family of measurable parts A ,
μ(A) is the probability measure (in some particular cases the conserved Liouville measure,
or the area) of the subset A ∈ A of M . T is a measure - preserving automorphism (i.e.
one to one almost everywhere) [4]. Suppose that μ(M) = 1 and T preserves the measure
μ:

μ(T(A)) = μ(A) (20)

for all A ∈ A. The scalar product is given in analogy to 2, according to [3] and [4]

hψ, ϕi =
Z
M

ψ∗(x)ϕ(x)dμ(x) (21)

for ψ(x), ϕ(x) from H = L2(M,μ). The meaning of the operators P, U and the subspace
Hinv is the same as before.
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Remark 2 By triangle inequality we can study separately the cases when ψ ∈ Hinv and
ψ ∈ H⊥ , where H⊥ is the subspace annihilated by P.

Remark 3 Because Pξ and P are projectors, then the strong convergence holds, iff Pξ

converges weakly to P. More explicitly, the condition: for all ψ ∈ H , limξ→0 k(Pξ −P)ψk =
0 is equivalent to: for all ψ ∈ H limξ→0hψ, (Pξ −P)ψi.

Lemma 5 If ψ ∈ H⊥,where H⊥ is the subs then limξ→0 k(Pξ −P)ψk = 0.

Proof. By lemma 1 there exist for each ε a vector gε ∈ H such that kψ − (U− I)gεk ≤
ε
2
. Because Pψ = Pgε = 0, we obtain

k(Pξ −P)ψk = kPξψk ≤ kPξ(ψ − (U− I)gε)k+ kPξ(U− I)gεk 6

≤ ε

2
+ kPξ(Uξ−I)gεk+ kPξ(U−Uξ)gεk (22)

the second term in 22 is zero and for the third term we use the fact that a projector’s
norm is one. We get

k(Pξ −P)ψk ≤
ε

2
+ k(U−Uξ)gεk (23)

But by strong convergence of Uξ there exist δ such that for all |ξ| ≤ δ the inequality
k(U−Uξ)gεk ≤ ε

2
is satisfied. This fact, together with 23 completes the proof.

4.3 Phase space portrait continuity

Now we study the limit

lim
ξ→0

k(Pξ −P)ψk (24)

when ψ ∈ Hinv . Observe that if ψ is an invariant functions then the sets ψ = const give
the phase space portrait. Observe that when the our dynamic system is ergodic, thenHinv

contains only constant functions. In this case from ψ ∈ Hinv it follows Pξψ = Pψ = ψ
consequently from previous lemma we get

Corollary 6 If a dynamic system is ergodic then for all ψ ∈ H we have limξ→0 k(Pξ −P)ψk =
0, and for every ψ, ϕ ∈ H, Ωξ converges weakly to Ω , i.e. limξ→0hϕ, (Ωξ −Ω)ψi = 0.

In the continuation we will restrict ourselves to the area preserving maps and study
the another extreme case. Suppose that the conditions of KAM theorem [3] are fulfilled.
Consider some real, positive and bounded function ψ ∈ Hinv. Then Pξψ decomposes in
two components, one of them, ψs

ξ, with the support in stochastic part and another, ψ
r
ξ,

with the support in the regular part. Both subspaces, spanned by all ψs
ξ , respectively ψ

r
ξ

, are invariants under the action of Uξ

Pξψ = ψs
ξ + ψr

ξ (25)

But due to the KAM theorem the measure of the stochastic domain is small and the value
of Pξψ is bounded by the same bound as ψ, it follows that limξ→0

°°ψs
ξ

°° = 0.
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5 Conclusions

We proved that in the framework of the ergodic theory it is possible to extend the concept
of the winding number and also ins inverse, the safety factor, outside of the ideal standard
model of the nested magnetic surfaces. The winding number is defined almost everywhere
and it is of L∞ class. This aspect is in contrast to the usual winding number, or safety
factor profile function, that are supposed to be defined as a continuos and perhaps also
differentiable function. In the weakly perturbed ideal magnetic field line structures the
winding number on the undestroied invariant magnetic surfaces is identical to the classical
winding number. On the ergodic domains it is defined almost everywhere (with respect
to the invariant Liouville measure) and it is equivalent to constant function. Due to the
persistence of the elliptic fixed points embedded in stable islands, originating from the
destruction of rational magnetic surfaces, all points of these islands has the same winding
number as the undestroied rational magnetic surfaces. By increasing the perturbation, in
the ergodic domain will be embedded many islands corresponding to the different winding
number. This phenomenon give rise to the apparent non monotone safety profile.
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