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No cross-couplings between a collection of massless

tensors with the mixed symmetry (2,2) and a
Pauli-Fierz field
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Abstract

Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincaré
invariance of the deformations, combined with the requirement that the interaction
vertices contain at most two space-time derivatives of the fields, we investigate the
consistent cross-couplings that can be added between a collection of massless tensor
fields with the mixed symmetry (2,2) and a Pauli-Fierz field. The computations are
done with the help of the deformation theory based on a cohomological approach,
in the context of the antifield-BRST formalism. Our final result is that no cross-
couplings are possible.

PACS number: 11.10.Ef

In the past years tensor fields in exotic representations of the Lorentz group [1]-[7]
have been proved extremely useful in the dual formulation of field theories of spin two
or higher [8]-[14], in showing the impossibility of consistent cross-interactions in the dual
formulation of linearized gravity [15], or in the derivation of some exotic gravitational
interactions [16, 17]. An important matter related to mixed symmetry type tensor fields
is the study of their consistent interactions, among themselves as well as with higher-spin
gauge theories [18]-[26]. The most efficient approach to this problem is the cohomological
one, based on the deformation of the solution to the master equation [27].

The purpose of this paper is to investigate the consistent cross-couplings between a
collection of massless tensor gauge fields with the mixed symmetry of the Riemann tensor
and a Pauli-Fierz field. Our analysis relies on the deformation of the solution to the
master equation by means of cohomological techniques with the help of the local BRST
cohomology, whose component for a collection of (2,2) fields has been considered in [28§]
and in the Pauli-Fierz sector has been investigated in [29]. Under the hypotheses of
analyticity in the coupling constant, locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the preservation of the number of derivatives on each
field, we find that no cross-couplings can be added to the original Lagrangian action.

The starting point is given by the Lagrangian action for a finite collection of free,

massless tensor fields with the mixed symmetry of the Riemann tensor and for a Pauli—
Fierz field in D > 5

So [0 o] = S [Fjas] + 5" ] (1)
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We employ the flat Minkowski metric of ‘mostly plus’ signature o = 0, = (— + + +
+...). The lowercase indices a, b, etc. stand for the collection indices and are assumed
to take discrete values 1, 2, ..., n. They are lowered with a symmetric, constant and
invertible matrix, of elements k,,, and are raised with the help of the elements k% of its
inverse. Each tensor field U exhibits the mixed symmetry of the Riemann tensor, so
it is separately antisymmetric in the pairs {y, v} and {«, 8}, is symmetric under their
permutation ({u,v} «— {q, ﬁ}) and satisfies the identity r{,,, 5 = 0. The notations
s signify the traces of Tiwlas> Tog = 0" Thjaps which are symmetric, 75 = 7, while
r® represent their double traces , r* = O'VBTVB, which are scalars. The Pauli-Fierz field
h,, is symmetric and h denotes its trace. Action (1) admits a generating set of gauge
transformations of the form

a

O¢T o = Oubasly = Ovlagiy T Oaliuis = 088 wiar Ol = ey, (4)

where the gauge parameters fgwa and ¢, are arbitrary bosonic tensors, with £ZV|a dis-
playing the mixed symmetry (2,1). The gauge transformations from (4) are Abelian and
off-shell, first-order reducible. Consequently, the Cauchy order of this linear gauge theory
is equal to three.

Related to the generators of the BRST algebra, the ghost spectrum contains the fermi-
onic ghosts C¢ Bl and 7, associated with the gauge parameters and the bosonic ghosts for
ghosts Cj, corresponding to the first-order reducibility. Obviously, we will require that

Ci),, Preserve the mixed symmetry (2, 1) and the tensors Cjj, remain antisymmetric. The

antifield spectrum comprises the antifields r," V108 and h*" associated with the original
fields and those corresponding to the ghosts, C;*'*, n*#, and C:*. The antifields r," Vlaf
still have the mixed symmetry (2,2), h**" are symmetrlc, CH" vla exhibit the mixed sym-
metry (2, 1), and C** are antisymmetric. Related to the traces of 75" Vo8 and b we

will use the notations % = g,,rs"*? 1% = 5,58 and h*.

The BRST dlfferentlal decomposes in the sum between the Koszul-Tate differential
and the exterior longitudinal differential, s = § 4 v, the corresponding degrees of the
generators from the BRST complex being valued like

pgh (75,105) = 0 =pgh (7)), peh(Ch,,) =1=Dpgh(n,),
pgh (Ci,) =2, pgh (r;**?) = 0 = pgh (A**)
pgh (C;*1*) = pgh (n™*) = pgh (C;*) =0,
agh (7,1,5) = 0= agh (h,,), agh(Cp,,) =0=agh(n.),
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agh (CZV) =0, agh (TZ“”‘O‘B) =1=agh(h™"),
agh (C;*1*) =2 = agh ("), agh(C;")=3.

The actions of § and v on the generators from the BRST complex, which enforce the
standard BRST properties, are given by

Viwlag = Caglivg) T Cavligals Y = Oy, (5)
VChwia = 20aC, — 0 Cljas Y0 =0=170C},, (6)
Yl = O = AR, ACHIY = 0 = A, A C =0 (7)
07t as = 0 =0l 0Cl,, =0=0n,, Cl, =0, (8)
grpiel — iRgvlaﬁ L SR =2HM™ St = —20, ™", 9)
C; PV = —40, w10 5O = 30,Ci1. (10)

In the above R4 is defined by 657 /ort”1*® = — (1/4) R s
represents the components of the linearized Einstein tensor

and H,, = —(1/2)0S5¥ /oh

1
H/u/ = K/u/ - §O;WK7 H/u/ = Huu; (11)

with K, the linearized Ricci tensor and K the linearized scalar curvature, which are
defined with the help of the linearized Riemann tensor

1
Kyvjas = =5 (OuOalus — 0y0ahys — 0u0shwa + 0,05hya) (12)

via its trace and respectively its second-order contraction K,, = K %l K =K",.
The solution to the classical master equation for the free model under study reduces
to the sum between the solutions in the two sectors

S =S+ Sk (13)

where

S' =5 [ /wlaﬁ} +/ {TZW‘OCB (8#Cgﬁlu OuCapjyu + O CWIB aﬁcuvla)
+C1 (20,C8, — 0,CY, )] dPx, (14)

y]a

Sh = SEF [hm,] + /h*“”(‘?(unl,)dDa;. (15)

The reformulation of the problem of consistent deformations of a given action and of
its gauge symmetries in the antifield-BRST setting is based on the observation that if a
deformation of the classical theory can be consistently constructed, then the solution S
to the master equation for the initial theory can be deformed into the solution S of the
master equation for the interacting theory

S—S=84gS+¢S+¢S+g"'Sa+---, (16)
(5,8)=0— (5,5) =0. (17)
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The projection of (17) for S on the various powers of the coupling constant induces the
following tower of equations:

9 (S,8) =0, (18)
g :(51,5) =0, (19)
(S, 8) + % (S, S1) =0, (20)
93 . (Sg, S) + (Sl, Sg) = O, (21)

In the sequel we compute all consistent interactions that can be added to the free action (1)
by solving the deformation equations (19)—(21), etc., by means of specific cohomological
techniques, under the general hypotheses mentioned in the introductory paragraph.

In order to analyze equation (19) satisfied by the non-integrated density of the first-
order deformation a (S; = [adPz), sa = d,m*, it is convenient to split the first-order
deformation into

a=a"+ad +a™, (22)

where a" denotes the part responsible for the self-interactions of the Pauli-Fierz field, a*

is related to the deformations of the tensor fields Tivlap> and a'™ signifies the component
that describes only the cross-interactions between h,, and rzy‘a 5 Then, a" is completely
known (for a detailed analysis, see for instance [29])
a" = ag + aj + aj, (23)
where
ay = "0 e, (24)
at = =m0 (uhwe + Ovhpue — Ouhyw) (25)

and af is the cubic vertex of the Einstein—Hilbert Lagrangian plus a cosmological term.
The piece a" has been computed in [28] and is given by

a’ = z”: Car®, (26)
a=1

with ¢, some real, arbitrary constants.

We ensure the space-time locality of the deformations by working in the algebra of
local differential forms with coefficients that are polynomial functions in the fields, ghosts,
antifields, and their space-time derivatives (algebra of local forms), meaning that the non-
integrated density of the first-order deformation, a, is a polynomial function in all these
variables (algebra of local functions). Inserting (22) into the equation sa = 9,m* and
using the fact that the first two components already obey the equations sa® = 9,m} and
sa* = d,mt, it follows that only ¢™ is unknown, being subject to the equation

sa™ = 9,mk: (27)

int-

Next, we develop a™ according to the antighost number and assume that this expansion
contains a finite number of terms, with the maximum value of the antighost number equal
to I. Due to the decomposition s = § + =, this equation becomes equivalent to the chain

ya =0, I>0, (28)
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5 int int (I—l)“
art +yart; = 0p m oy, (29)
k—1)H

S +rafty = 9y, 112 k21, )

inty

(k)"

AL
where <$T2 ) are some local currents, with agh (mi t) = k. In conclusion, for / > 0
k=01

int n

we have that ai"* € H* (7).
Initially, we compute the cohomology H* () in the algebra of local functions. Due to
the fact that the exterior longitudinal differential v splits as

Y =%+ T, (31)

where v, acts non-trivially only in the (2,2) sector and 7y, does the same, but in the
Pauli-Fierz sector, Kiinneth’s Theorem for cohomologies ensure that

H* (y) = H* (%) @ H" (1) - (32)

Combining the results from [28] and [29] on H* (+,) and respectively on H* (v,), it follows
that the general solution to (28) reads

ailnt = ay ([W*G] ) [FSV/\IQBV] ) [Kuu\aﬁ]) w! (77#7 a[ﬂnl’b Czl/’ a[ﬂcia]) ’ (33)

where
w*@ _ (r:yu|a,8’ h*;w7 C:;,uy\a7 n*u’ C;,ul/) 7 (34)

e stand for the curvature tensors in the (2,2) sector

pv Aoy
F;fy)\\aﬂfy = aAaWTZV\aB + aﬁbaﬂmz)\\aﬂ + aVaVT§u|a,6’

+ 8>\8a7“z,/‘57 + 8M8a7“z>\‘57 + ayaarg\uw,y

+ N7 va T OuOT oA e + 0087 0 (35)
and K, |3 is the linearized Riemann tensor (12). The notation f ([¢]) means that f
depends on ¢ and its subsequent derivatives.

In fact, the coefficients oy <[w*®] , [Fﬁw\laﬁv] , [K W‘QBD are nothing but the invariant

polynomials (in form degree zero) of the theory (1). The notation w’ signifies the elements
of pure ghost number equal to I of a basis in the space of polynomials in 7,, d;,7,], C
and 9, C7,-

Substituting solution (33) into the next equation, (29), we obtain that the existence
of non-trivial solutions a™, to equation (29) for I > 0 is that the invariant polynomials
oy appearing in (33) generate non-trivial elements from HP (§|d). Taking into account
the fact that the maximum Cauchy order of the free gauge theory (1) is equal to three,

we have that [30]

a
pv?

HP (5]d) =0, k> 3. (36)

Meantime, it can be proven that
H™P(§|d) =0, k>3, (37)

where HI™P (§|d) denotes the invariant characteristic cohomology in antighost number
k. On account of the general results from [28] and [29] on the invariant characteristic
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cohomology, we are able to identify the non-trivial representatives of (H? (d|d)),.,, as
well as of (H}™P (6|d)),.,, under the form
non — trivial representatives
spanning HP (8|d) and HI™P (§|d)
k>3 none . (38)
k=3 Cam
k=2 vl

The previous results on HP (§|d) and H™P (§]d) allow us to eliminate successively all
the terms of antighost number £ > 3 from the non-integrated density of the first-order
deformation. The last representative is of the form (33), where the invariant polynomials
necessarily define non-trivial elements from HI™P (§|d) if I = 2,3 or respectively from
HP (§|d) if T =1.

In view of the above considerations we can assume that the first-order deformation
stops at [ =3

a™ = ag" + a™ + ay* + a", (39)
where al is of the form (33) for I = 3. At this point we enforce the assumption on the
maximum derivative order of the corresponding a to be equal to two. Using the result
that the most general representative of Hi*P (5|d) are the undifferentiated antifields C**
(see (38) for k = 3) and that the elements of pure ghost number three that fulfill the
condition on the maximum derivative order are given by

(1> B0 1137, oMy ChosBi0 1), 0 Co 1) (40)

we can write down that the general solution to equation (28) for I = 3 like

gt = Crof (f o+ Fons” Mt O3] + s o

ot Ch, O + Gt 3[ucbp]m> + b, (41)

where all the coefficients of the type f and g are required to be non-derivative constants.
Combining this result with the symmetries of the various coefficients due to the corre-
sponding symmetries of the antifield and of the ghosts, we remain with the following
independent possibilities in D > 5 space-time dimensions:

aiant _ agl)int + a:()’Q)int + CL:(),B)mt, (42)
where .
D =5, aél)mt = 5"“5“”"62% (cramumom, + dlabCZVnp) + vbél), (43)

D= 6, a:(f)int Q’BMVPACQB (CQanunua[pn)\]
+daatCl, 0 + daas 0 Co i) + 05, (44)

D>5, af’™ =P (Snanfdn ) + dCl P9,
+d2010 Cl 1 + A5 Cog?) + 5. (45)
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In the above all quantities of the type ¢ or d are real constants. Obviously, since a® is

subject to equation (29) for I = 3 and components (43)—(45) are mutually independent,
it follows that each of them must separately fulfill such an equation, i.e.,

6ai"™ = —yad™ 4 9mi, i=1,2,3. (46)

mt )
By computing the action of ¢ on (aéi)int> and using definitions (5)—(10), we infer
i=1,2,3
that none of them can be written like in the right-hand side of (46), no matter what
(bg)) we take in the right-hand side of (43)—(45), such that we must set all the nine
i=1,2,3

types constants equal to zero
Cma =0, m=1,23, dwp=0, n=123,456, (47)

and so a* = 0.
We pass to the next eligible value (I = 2) and write
a™ = ag" +a™ + ay*. (48)
Repeating the reasoning developed in the above, we obtain that ai™ is, up to trivial, -
exact contributions, of the form (33) for I = 2, with the elements of pure ghost number two
obeying the assumption on the maximum number of derivatives from the corresponding
a™ being equal to two expressed by

(nunwnuaz/np]acuma C ) (49)

Using the fact that the general representative of Hi™P (4|d) is spanned in this situation

by the undifferentiated antifields C;*°"" and n*® (see (38) for k = 2), to which we add the
requirement that ai® comprises only terms that effectively mix the ghost/antifield sectors
of the starting free theories, and combining these with , we obtain that

ait = C3 (g num, + g5t ) (50)
+ n*a (g3bacb + g4vpa Cbp}) + "}/bg,

where the coefficients denoted by ¢ are imposed to be non-derivative constants. Taking
into account the identity C**’" = 0 and the hypothesis that we work only in D > 5
space-time dimensions, we arrive at

. Ia o Clla o
ayt = Ca 5'“8[ang]m + 70(1 Al 50 n" + Vb (51)

We will analyze these terms separately. The first one leads to non-vanishing components
of antighost number one and respectively zero as solutions to the equations

1 (0) .

/int /int fint /int
6&2 +/7a1 a,U«mlnt ) 5(11 + a’O 8 mlnt )

where we made the notation
in C/a *
05" = - Cr* M O gy (53)
Indeed, straightforward calculations output

Nn C,a *purvio
aq b — 77,,a,u a8 [(ay,hua - al/hua) Np + (a‘lhﬁﬂ - 8Bhaﬂ) Uz
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— (Ouhup = Oyhys) Na — (Oahigy — Oghan) 1], (54)

/a
glint = %Réwmﬁ (Ppahws — hughye) - (55)

In consequence, we obtained a possible form of the first-order deformation for the cross-
interactions between the Pauli-Fierz theory and the tensor fields rzy‘aﬁ like
a/int — aaint + allint + al2int7 (56)

where the quantities in the right-hand side of (56) are expressed by (53)—(55). However,
a’™ is trivial in the context of the overall non-integrated density a™ of the first-order
deformation in the sense that it is in a trivial class of the local cohomology of the free
BRST differential H%? (s|d). Indeed, one can check that it can be put in a s-exact modulo

d form
in a 1 * UV 1 *Q
a™ = % gcaﬂ Ny — §Ca Blu (haunﬁ - hﬁlma)

1
+§T2W|a6 (huahl/b’ - h#ﬁhva) + 8ulu7 (57)

and so it can be eliminated from a'™ by setting
d*=0. (58)

The second piece in (51), which is clearly non-trivial, appears to be more interesting,.
Indeed, let us fix the trivial (y-exact) contribution from the right-hand side of (51) to

by = = pras Py (59)
9 Ta preaytl
which is equivalent to starting from
ag™t = c"C; (Do) 1 (60)

Then, it yields the component of antighost one as solution to the equation day™ +~ya//™t =

@ *

/i
o,

¢ in the form

ayfit = 2"y rhe (Ophax + Oahyuy — Orhya) . (61)
Next, we pass to the equation

. . (0 *
day™ + yag™ = 9,m, (62)

int »

where
/la
¢ A

5alllint — _TRgO‘ (auha)\ + aozhu)\ — a)\hua) - (63)

In the sequel we will show that there are no solutions to (62). Our procedure goes as
/fint

follows. Suppose that there exist solutions ag™ to equation (62). Using formula (63), it
follows that such an aj™ must be linear in the tensor fields Tilags quadratic in the Pauli-

Fierz field, and second-order in the derivatives. Integrating by parts in the corresponding
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functional constructed from af™ allows us to move the derivatives such as to act only on

the Pauli-Fierz fields, and therefore to work with

ag™t = " ptviefgln o (hooh, 9hoh) (64)

vl

where the above notation signifies that ahn‘ op 18 a linear combination of the generic poly-
nomials between parentheses (with the mixed symmetry of the tensor fields TWIaﬁ) By
direct computation we get that

yagrt = on (4c”“C§‘B‘”agﬁ|a6) — 40"“C2‘5|”8"a2ﬁ|a6 + c”arg”b‘ﬁyaﬁﬂlaﬁ, (65)
where
VCLlﬁﬁmﬁ = am,|a5 (h000n, Ohdon, 00hdn) , (66)

/int

with 7 a generic notation for the Pauli-Fierz ghost 7,. As da™ contains no ghosts from

the r¢ Jiwlag-Sector, we require that vag™ obeys the property

Ouamaﬁ (hdoh, 0hoh) = 0, (67)
such that
yal /int = oM <4Cllaca,6’|y Er;la ) + Cl/argﬂaﬂ,yaﬂl;laﬁ' (68)
Simple calculations in (63) give
Sa™ = 9,p + c”“rﬁ”'“ﬁbﬁﬂlaﬁ (OhOdn, 00hOn, nOAOh) . (69)

Inserting (68)—(69) in (62) and observing that only bh‘;‘ op contains terms that are third-
order in the derivatives of the Pauli-Fierz fields, we conclude that the existence of af™
is completely dictated by the behavior of bhl,|(l 5- More precisely, ag "t exists if and only if
the part of the type nddoh from bb‘;‘a 5 vanishes identically and /or can be written like the
d-variation of something like Oh*rn. Direct computation produces the part from bhfjmﬁ of
order three in the derivatives of the Pauli-Fierz fields in the form

bin 5 (nOOOh) ~ 10\ (05, (0,0 hpe + 0a0 hpy — Ohey — 0a0,h)

W\aﬁ
1
~ 56 0an (070" hyy — Oh) + 030, hay + (@ —— B, 11— v)
_(6<—>Oév/vb_>/~L7V_>V)_(/“L<—>V7Oé_>a7ﬁ_>ﬁ)]7 (70)
and it neither vanishes identically nor is proportional with ¢ ((%hzﬂ), as it can be observed
from expression (11) of the functions that define the field equations for the Pauli-Fierz

field. The rest of the terms from (70) are obtained from the first ones by making the
indicated index-changes. In conclusion, we must also take

"a =0 (71)

n (60), so al'* = 0.
Now, we analyze the next possibility, namely I =1

int int int
a™ = ay" + al”, (72)

where a!™ must be searched among the non-trivial solutions to the equation yal™ = 0,

which are offered by
ai* = o ([r*°] (W], [Finjass]  [Kwlas]) @ (1 0am) (73)
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where the elements of pure ghost number one are

(s O - (74)

On the one hand, the assumption on the maximum derivative order of the interacting La-
grangian being equal to two prevents the coefficients a; to depend on either the curvature
tensors or their space-time derivatives. On the other hand, a™ can involve only the anti-

fields r2*® and their space-time derivatives, because otherwise, as w! includes only the
Pauli-Fierz ghosts, it would not lead to cross-interactions between the fields walaﬁ and
h,. Moving in addition the derivatives from these antifields such as to act only on the
elements (74) from @' and relying again on the assumption on the maximum derivative
order, we eventually remain with one possibility (up to vy-exact quantities)

ai"* ~ ki (010015 = 0,0 Ta) + 000 Na) = Tuallue)
= 4k 2P0, mg = 0, (75)
which vanishes identically due to the symmetry of the trace of the antifields ri**”.
As a™ in (75) vanishes, we remain with one more case, namely where o™ reduces to
its antighost number zero piece

a“int = a%)nt ([TZI/|O£,3j| ’ [hﬂl’]) ’ (76)

which is subject to the equation
“w

in (0)
Yaq b= Oy Mg (77)

0™
There are two types of solutions to (77). The first one corresponds to (m)mt = 0 and

is given by arbitrary polynomials that mix the curvature tensors (35) and their space-
time derivatives with the linearized Riemann tensor (12) and its derivatives, which are

however excluded from the condition on the maximum derivative order of ai"* (their
o

0
derivative order is at least four). The second one is associated with %im # 0, being
understood that we discard the divergence-like solutions a® = 9,2" and preserve the
maximum derivative-order restriction. Denoting the Euler-Lagrange derivatives of ai'* by
B = daint/ 075, p and respectively by D = dait /5h,,, we get that equation (77)
implies

0, BL1*% =0, 9,D" =0. (78)

The tensors B2*? and D" are imposed to contain at most two derivatives and to have

the mixed symmetry of TiloB and respectively of h,,. Meanwhile, they must yield a

Lagrangian density ai™ that effectively couples the two sorts of fields, so BY*®” and D

effectively depend on h,, and respectively on r¢ The solutions to equations (78) are

pvlap*
of the type
int int
—5530 — pwied — g0, dmes S8 _ puw g o fuels (79)
Tul/|aﬁ uv

where %1% and drelv8 depend only on the undifferentiated fields huw and 74, 5 (oth-
erwise, the corresponding ai™ would be more than second-order in the derivatives), with

1Pl Yaving the mixed symmetry of the curvature tensors F2”1*?7 and 8 that of
the linearized Riemann tensor. We introduce a derivation on the algebra of non-integrated
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densities depending on sz|a/3’

fields and their derivatives

h,., and on their derivatives, that counts the powers of the

0 0
a + Opr i o) 57—
auL--MnT;w\aB)

N = Z (aul...uanV\aﬁ) 8(

n>0

and observe that the action of N on an arbitrary non-integrated density @ ( [rﬁuh B] , [h,w])
is

N ou ou
Nu =r? +h +a,rt (81)
viaB s, .a 124 pho
P Or a dhu
where 6u/dry,, 5 and 6u/0hy, denote the variational derivatives of 4. In the case where

u is a homogeneous polynomial of order p > 0 in the fields and their derivatives, we have
that Nu = pu, and so

1 ou ou 1
=—|r?, s— — —rt . 2
D (Tuuaﬁ 5rzy|a5 + Ty 5hw) + O, (pr ) (82)

As @l can always be decomposed as a sum of homogeneous polynomials of various orders,
it is enough to analyze the equation (77) for a fixed value of p. Putting & = a® in (82)
and inserting (79) in the associated relation, we can write

I

. 1 A ~
05" = = (FijaadyPh B 4 20,87 ) 40,7 (83)

Integrating twice by parts in (83) and recalling the mixed symmetries of PP and
drelB e infer that

A = Ty FY, 0y D2 4 T K g 5@ 4 0,1, (84)

pvplaBy

with k; = 1/9p and ky = —1/2p. By computing the action of v on (84), we obtain that
p =2 and

ag® = KRNy (85)
As the above ai vanishes on the stationary surface of field equations for Tilaps 1018 trivial
in H%P (s|d), so it can be removed from the first-order deformation by choosing

E =0. (86)
Putting together the results obtained so far, we can state that Si** = 0 and so
Sy =Sh 4+ 58, (87)

where SP' is the first-order deformation of the solution to the master equation for the
Pauli-Fierz theory and S is given in the right-hand side of (26). The consistency of
S1 at the second order in the coupling constant is governed by equation (20), where
(St,85) =0 = (51, 5f), and thus we have that Sj = 0 = S¥*, while S} is highly non-
trivial and is known to describe the quartic vertex of the Einstein—Hilbert action, as well
as the second-order contributions to the gauge transformations and to the associated non-
Abelian gauge algebra. The vanishing of Si* and S further leads, via the equations
that stipulate the higher-order deformation equations, to the result that actually

St — 0, k> 1. (88)
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The main conclusion of this paper is that, under the general conditions of analyticity
in the coupling constant, space-time locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-trivial cross-couplings between
the Pauli-Fierz field and a collection of massless tensor fields with the mixed symmetry
of the Riemann tensor. The only pieces that can be added to action (1) are given by
some cosmological terms for the tensors Tivlag and, naturally, by the self-interactions of
the Pauli—Fierz field, which produce the Einstein—Hilbert action, invariant under diffeo-
morphisms.
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