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Abstract
Under the hypotheses of analyticity, locality, Lorentz covariance, and Poincaré

invariance of the deformations, combined with the requirement that the interaction
vertices contain at most two space-time derivatives of the fields, we investigate the
consistent cross-couplings that can be added between a collection of massless tensor
fields with the mixed symmetry (2, 2) and a Pauli—Fierz field. The computations are
done with the help of the deformation theory based on a cohomological approach,
in the context of the antifield-BRST formalism. Our final result is that no cross-
couplings are possible.
PACS number: 11.10.Ef

In the past years tensor fields in exotic representations of the Lorentz group [1]—[7]
have been proved extremely useful in the dual formulation of field theories of spin two
or higher [8]—[14], in showing the impossibility of consistent cross-interactions in the dual
formulation of linearized gravity [15], or in the derivation of some exotic gravitational
interactions [16, 17]. An important matter related to mixed symmetry type tensor fields
is the study of their consistent interactions, among themselves as well as with higher-spin
gauge theories [18]—[26]. The most efficient approach to this problem is the cohomological
one, based on the deformation of the solution to the master equation [27].
The purpose of this paper is to investigate the consistent cross-couplings between a

collection of massless tensor gauge fields with the mixed symmetry of the Riemann tensor
and a Pauli—Fierz field. Our analysis relies on the deformation of the solution to the
master equation by means of cohomological techniques with the help of the local BRST
cohomology, whose component for a collection of (2, 2) fields has been considered in [28]
and in the Pauli—Fierz sector has been investigated in [29]. Under the hypotheses of
analyticity in the coupling constant, locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the preservation of the number of derivatives on each
field, we find that no cross-couplings can be added to the original Lagrangian action.
The starting point is given by the Lagrangian action for a finite collection of free,

massless tensor fields with the mixed symmetry of the Riemann tensor and for a Pauli—
Fierz field in D ≥ 5

S0
£
raμν|αβ, hμν

¤
= Sr0

£
raμν|αβ

¤
+ SPF0 [hμν] , (1)
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where

Sr0
£
raμν|αβ

¤
=

Z ½
1

8

£¡
∂λrμν|αβa

¢ ¡
∂λr

a
μν|αβ

¢
+
¡
∂λra

¢
(∂λr

a)
¤

− 1
2

£¡
∂μr

μν|αβ
a

¢ ¡
∂λraλν|αβ

¢
+
¡
∂λrνβa

¢ ¡
∂λr

a
νβ

¢
+
¡
∂νr

νβ
a

¢
(∂βr

a)
¤

−
¡
∂μr

μν|αβ
a

¢
(∂βr

a
να) +

¡
∂νr

νβ
a

¢ ¡
∂λraλβ

¢ª
dDx, (2)

SPF0 [hμν] =

Z ½
−1
2
[(∂ρhμν) (∂ρhμν)− (∂ρh) (∂ρh)]

(∂ρh
ρμ)
¡
∂λhλμ

¢
− (∂ρh)

¡
∂λhλρ

¢ª
dDx. (3)

We employ the flat Minkowski metric of ‘mostly plus’ signature σμν = σμν = (− + + +
+ . . .). The lowercase indices a, b, etc. stand for the collection indices and are assumed
to take discrete values 1, 2, . . ., n. They are lowered with a symmetric, constant and
invertible matrix, of elements kab, and are raised with the help of the elements kab of its
inverse. Each tensor field raμν|αβ exhibits the mixed symmetry of the Riemann tensor, so
it is separately antisymmetric in the pairs {μ, ν} and {α, β}, is symmetric under their
permutation ({μ, ν} ←→ {α, β}), and satisfies the identity ra[μν|α]β ≡ 0. The notations
raνβ signify the traces of r

a
μν|αβ, r

a
νβ = σμαraμν|αβ, which are symmetric, r

a
νβ = raβν, while

ra represent their double traces , ra = σνβraνβ, which are scalars. The Pauli—Fierz field
hμν is symmetric and h denotes its trace. Action (1) admits a generating set of gauge
transformations of the form

δξr
a
μν|αβ = ∂μξ

a
αβ|ν − ∂νξ

a
αβ|μ + ∂αξ

a
μν|β − ∂βξ

a
μν|α, δ�hμν = ∂(μ �ν), (4)

where the gauge parameters ξaμν|α and �ν are arbitrary bosonic tensors, with ξaμν|α dis-
playing the mixed symmetry (2, 1). The gauge transformations from (4) are Abelian and
off-shell, first-order reducible. Consequently, the Cauchy order of this linear gauge theory
is equal to three.
Related to the generators of the BRST algebra, the ghost spectrum contains the fermi-

onic ghosts Caαβ|μ and ημ associated with the gauge parameters and the bosonic ghosts for
ghosts Caμν corresponding to the first-order reducibility. Obviously, we will require that
Caαβ|μ preserve the mixed symmetry (2, 1) and the tensors Caμν remain antisymmetric. The
antifield spectrum comprises the antifields r∗μν|αβa and h∗μν associated with the original
fields and those corresponding to the ghosts, C∗μν|αa , η∗μ, and C∗μνa . The antifields r∗μν|αβa

still have the mixed symmetry (2, 2), h∗μν are symmetric, C∗μν|αa exhibit the mixed sym-
metry (2, 1), and C∗μνa are antisymmetric. Related to the traces of r∗μν|αβa and h∗μν , we
will use the notations r∗νβa = σμαr

∗μν|αβ
a , r∗a = σνβr

∗νβ
a , and h∗.

The BRST differential decomposes in the sum between the Koszul—Tate differential
and the exterior longitudinal differential, s = δ + γ, the corresponding degrees of the
generators from the BRST complex being valued like

pgh
¡
raμν|αβ

¢
= 0 = pgh (hμν) , pgh

¡
Caμν|α

¢
= 1 = pgh (ημ) ,

pgh
¡
Caμν
¢
= 2, pgh

¡
r∗μν|αβa

¢
= 0 = pgh (h∗μν) ,

pgh
¡
C∗μν|αa

¢
= pgh (η∗μ) = pgh (C∗μνa ) = 0,

agh
¡
raμν|αβ

¢
= 0 = agh (hμν) , agh

¡
Caμν|α

¢
= 0 = agh (ημ) ,
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agh
¡
Caμν
¢
= 0, agh

¡
r∗μν|αβa

¢
= 1 = agh (h∗μν) ,

agh
¡
C∗μν|αa

¢
= 2 = agh (η∗μ) , agh (C∗μνa ) = 3.

The actions of δ and γ on the generators from the BRST complex, which enforce the
standard BRST properties, are given by

γraμν|αβ = Caαβ|[ν,μ] + Caμν|[β,α], γhμν = ∂(μην), (5)

γCaμν|α = 2∂αCaμν − ∂[μCaν]α, γημ = 0 = γCaμν , (6)

γr∗μν|αβa = 0 = γh∗μν , γC∗μν|αa = 0 = γη∗μ, γC∗μνa = 0, (7)

δraμν|αβ = 0 = δhμν , δCaμν|α = 0 = δημ, δCaμν = 0, (8)

δr∗μν|αβa =
1

4
Rμν|αβ
a , δh∗μν = 2Hμν , δη∗μ = −2∂νh∗νμ, (9)

δC∗αβ|νa = −4∂μr∗μν|αβa , δC∗μνa = 3∂αC∗μν|αa . (10)

In the aboveRμν|αβ
a is defined by δSr0/δr

μν|αβ
a ≡ − (1/4)Ra

μν|αβ andHμν = −(1/2)δSPF0 /δhμν

represents the components of the linearized Einstein tensor

Hμν = Kμν −
1

2
σμνK, Hμν = Hνμ, (11)

with Kμν the linearized Ricci tensor and K the linearized scalar curvature, which are
defined with the help of the linearized Riemann tensor

Kμν|αβ = −
1

2
(∂μ∂αhνβ − ∂ν∂αhμβ − ∂μ∂βhνα + ∂ν∂βhμα) (12)

via its trace and respectively its second-order contraction Kμν = Kα
μ|αν , K = Kμ

μ.
The solution to the classical master equation for the free model under study reduces

to the sum between the solutions in the two sectors

S = Sr + Sh, (13)

where

Sr = Sr0
£
raμν|αβ

¤
+

Z £
r∗μν|αβa

¡
∂μCaαβ|ν − ∂νCaαβ|μ + ∂αCaμν|β − ∂βCaμν|α

¢
+C∗μν|αa

¡
2∂αCaμν − ∂[μCaν]α

¢¤
dDx, (14)

Sh = SPF0 [hμν] +

Z
h∗μν∂(μην)d

Dx. (15)

The reformulation of the problem of consistent deformations of a given action and of
its gauge symmetries in the antifield-BRST setting is based on the observation that if a
deformation of the classical theory can be consistently constructed, then the solution S
to the master equation for the initial theory can be deformed into the solution S̄ of the
master equation for the interacting theory

S −→ S̄ = S + gS1 + g2S2 + g3S3 + g4S4 + · · · , (16)

(S, S) = 0 −→
¡
S̄, S̄

¢
= 0. (17)
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The projection of (17) for S̄ on the various powers of the coupling constant induces the
following tower of equations:

g0 : (S, S) = 0, (18)

g1 : (S1, S) = 0, (19)

g2 : (S2, S) +
1

2
(S1, S1) = 0, (20)

g3 : (S3, S) + (S1, S2) = 0, (21)
...

In the sequel we compute all consistent interactions that can be added to the free action (1)
by solving the deformation equations (19)—(21), etc., by means of specific cohomological
techniques, under the general hypotheses mentioned in the introductory paragraph.
In order to analyze equation (19) satisfied by the non-integrated density of the first-

order deformation a (S1 =
R
adDx), sa = ∂μm

μ, it is convenient to split the first-order
deformation into

a = ah + ar + aint, (22)

where ah denotes the part responsible for the self-interactions of the Pauli—Fierz field, ar

is related to the deformations of the tensor fields raμν|αβ, and aint signifies the component
that describes only the cross-interactions between hμν and raμν|αβ. Then, a

h is completely
known (for a detailed analysis, see for instance [29])

ah = ah0 + ah1 + ah2, (23)

where
ah2 = η∗μηα∂μηα, (24)

ah1 = −h∗μνηα (∂μhνα + ∂νhμα − ∂αhμν) , (25)

and ah0 is the cubic vertex of the Einstein—Hilbert Lagrangian plus a cosmological term.
The piece ar has been computed in [28] and is given by

ar =
nX

a=1

car
a, (26)

with ca some real, arbitrary constants.
We ensure the space-time locality of the deformations by working in the algebra of

local differential forms with coefficients that are polynomial functions in the fields, ghosts,
antifields, and their space-time derivatives (algebra of local forms), meaning that the non-
integrated density of the first-order deformation, a, is a polynomial function in all these
variables (algebra of local functions). Inserting (22) into the equation sa = ∂μm

μ and
using the fact that the first two components already obey the equations sah = ∂μm

μ
h and

sar = ∂μm
μ
r , it follows that only a

int is unknown, being subject to the equation

saint = ∂μm
μ
int. (27)

Next, we develop aint according to the antighost number and assume that this expansion
contains a finite number of terms, with the maximum value of the antighost number equal
to I. Due to the decomposition s = δ + γ, this equation becomes equivalent to the chain

γaintI = 0, I > 0, (28)
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δaintI + γaintI−1 = ∂μ
(I−1)
m

μ

int, (29)

δaintk + γaintk−1 = ∂μ
(k−1)
m

μ

int, I − 1 ≥ k ≥ 1, (30)

where
µ
(k)
m

μ

int

¶
k=0,I

are some local currents, with agh
µ
(k)
m

μ

int

¶
= k. In conclusion, for I > 0

we have that aintI ∈ H∗ (γ).
Initially, we compute the cohomology H∗ (γ) in the algebra of local functions. Due to

the fact that the exterior longitudinal differential γ splits as

γ = γr + γh, (31)

where γr acts non-trivially only in the (2, 2) sector and γh does the same, but in the
Pauli—Fierz sector, Künneth’s Theorem for cohomologies ensure that

H∗ (γ) = H∗ (γr)⊗H∗ (γh) . (32)

Combining the results from [28] and [29] on H∗ (γr) and respectively on H∗ (γh), it follows
that the general solution to (28) reads

aintI = αI

¡£
ω∗Θ

¤
,
£
F a
μνλ|αβγ

¤
,
£
Kμν|αβ

¤¢
ωI
¡
ημ, ∂[μην], Caμν, ∂[μCaνα]

¢
, (33)

where
ω∗Θ =

¡
r∗μν|αβa , h∗μν, C∗μν|αa , η∗μ, C∗μνa

¢
, (34)

F a
μνλ|αβγ stand for the curvature tensors in the (2, 2) sector

F a
μνλ|αβγ = ∂λ∂γr

a
μν|αβ + ∂μ∂γr

a
νλ|αβ + ∂ν∂γr

a
λμ|αβ

+ ∂λ∂αr
a
μν|βγ + ∂μ∂αr

a
νλ|βγ + ∂ν∂αr

a
λμ|βγ

+ ∂λ∂βr
a
μν|γα + ∂μ∂βr

a
νλ|γα + ∂ν∂βr

a
λμ|γα, (35)

and Kμν|αβ is the linearized Riemann tensor (12). The notation f ([q]) means that f
depends on q and its subsequent derivatives.
In fact, the coefficients αI

³£
ω∗Θ

¤
,
h
F a
μνλ|αβγ

i
,
£
Kμν|αβ

¤´
are nothing but the invariant

polynomials (in form degree zero) of the theory (1). The notation ωI signifies the elements
of pure ghost number equal to I of a basis in the space of polynomials in ημ, ∂[μην], Caμν,
and ∂[μCaνα].
Substituting solution (33) into the next equation, (29), we obtain that the existence

of non-trivial solutions aintI−1 to equation (29) for I > 0 is that the invariant polynomials
αI appearing in (33) generate non-trivial elements from HD

I (δ|d). Taking into account
the fact that the maximum Cauchy order of the free gauge theory (1) is equal to three,
we have that [30]

HD
k (δ|d) = 0, k > 3. (36)

Meantime, it can be proven that

H invD
k (δ|d) = 0, k > 3, (37)

where H invD
k (δ|d) denotes the invariant characteristic cohomology in antighost number

k. On account of the general results from [28] and [29] on the invariant characteristic
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cohomology, we are able to identify the non-trivial representatives of
¡
HD

k (δ|d)
¢
k≥2, as

well as of
¡
H invD

k (δ|d)
¢
k≥2, under the form

agh
non− trivial representatives
spanning HD

k (δ|d) and H invD
k (δ|d)

k > 3 none
k = 3 C∗μνa

k = 2 C∗μν|αa , η∗μ

. (38)

The previous results on HD
I (δ|d) and H invD

I (δ|d) allow us to eliminate successively all
the terms of antighost number k > 3 from the non-integrated density of the first-order
deformation. The last representative is of the form (33), where the invariant polynomials
necessarily define non-trivial elements from H invD

I (δ|d) if I = 2, 3 or respectively from
HD
1 (δ|d) if I = 1.
In view of the above considerations we can assume that the first-order deformation

stops at I = 3
aint = aint0 + aint1 + aint2 + aint3 , (39)

where aint3 is of the form (33) for I = 3. At this point we enforce the assumption on the
maximum derivative order of the corresponding aint0 to be equal to two. Using the result
that the most general representative of H invD

3 (δ|d) are the undifferentiated antifields C∗αβa

(see (38) for k = 3) and that the elements of pure ghost number three that fulfill the
condition on the maximum derivative order are given by¡

ημηνηρ, ημην∂[ρηλ], Cbμνηρ, Cbμν∂[ρηλ], ∂[μCbνρ]ηλ
¢
, (40)

we can write down that the general solution to equation (28) for I = 3 like

aint3 = C∗αβa

³
faμνρ1αβ ημηνηρ + faμνρλ2αβ ημην∂[ρηλ] + gaμνρ1bαβCbμνηρ

+gaμνρλ2bαβ Cbμν∂[ρηλ] + gaμνρλ3bαβ ∂[μCbνρ]ηλ
´
+ γb3, (41)

where all the coefficients of the type f and g are required to be non-derivative constants.
Combining this result with the symmetries of the various coefficients due to the corre-
sponding symmetries of the antifield and of the ghosts, we remain with the following
independent possibilities in D ≥ 5 space-time dimensions:

aint3 = a
(1)int
3 + a

(2)int
3 + a

(3)int
3 , (42)

where
D = 5, a

(1)int
3 = εαβμνρC∗aαβ

¡
c1aημηνηρ + d1abCbμνηρ

¢
+ γb

(1)
3 , (43)

D = 6, a
(2)int
3 = εαβμνρλC∗aαβ

¡
c2aημην∂[ρηλ]

+d2abCbμν∂[ρηλ] + d3ab∂[μCbνρ]ηλ
¢
+ γb

(2)
3 , (44)

D ≥ 5, a
(3)int
3 = C∗αβa

¡
ca3ηαη

ρ∂[β ηρ] + da4bCb ρ
α ∂[ρηβ]

+da5b∂[αCbβρ]ηρ + db6a∂[ρCbαβ]ηρ
¢
+ γb

(3)
3 . (45)
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In the above all quantities of the type c or d are real constants. Obviously, since aint3 is
subject to equation (29) for I = 3 and components (43)—(45) are mutually independent,
it follows that each of them must separately fulfill such an equation, i.e.,

δa
(i)int
3 = −γa(i)int2 + ∂μm

(i)μ
int , i = 1, 2, 3. (46)

By computing the action of δ on
³
a
(i)int
3

´
i=1,2,3

and using definitions (5)—(10), we infer

that none of them can be written like in the right-hand side of (46), no matter what³
b
(i)
3

´
i=1,2,3

we take in the right-hand side of (43)—(45), such that we must set all the nine

types constants equal to zero

cma = 0, m = 1, 2, 3, dnab = 0, n = 1, 2, 3, 4, 5, 6, (47)

and so aint3 = 0.
We pass to the next eligible value (I = 2) and write

aint = aint0 + aint1 + aint2 . (48)

Repeating the reasoning developed in the above, we obtain that aint2 is, up to trivial, γ-
exact contributions, of the form (33) for I = 2, with the elements of pure ghost number two
obeying the assumption on the maximum number of derivatives from the corresponding
aint0 being equal to two expressed by¡

ημην , ημ∂[ν ηρ], Caμν , ∂[μCaνρ]
¢
. (49)

Using the fact that the general representative of H invD
2 (δ|d) is spanned in this situation

by the undifferentiated antifields C∗αβ|γa and η∗α (see (38) for k = 2), to which we add the
requirement that aint2 comprises only terms that effectively mix the ghost/antifield sectors
of the starting free theories, and combining these with , we obtain that

aint2 = C∗αβ|γa

¡
gaμν1αβγημην + gaμνρ2αβγημ∂[ν ηρ]

¢
(50)

+ η∗α
¡
gμν3bαCbμν + gμνρ4bα∂[μCbνρ]

¢
+ γb2,

where the coefficients denoted by g are imposed to be non-derivative constants. Taking
into account the identity C∗[αβ|γ] ≡ 0 and the hypothesis that we work only in D ≥ 5
space-time dimensions, we arrive at

aint2 =
c0a

2
C∗αβ|μa ∂[αηβ]ημ +

c00a

2
C∗αβ|a β∂[αημ]η

μ + γb2. (51)

We will analyze these terms separately. The first one leads to non-vanishing components
of antighost number one and respectively zero as solutions to the equations

δa0int2 + γa0int1 = ∂μ
(1)

m0
int

μ

, δa0int1 + γa0int0 = ∂μ
(0)

m0
int

μ

, (52)

where we made the notation

a0int2 =
c0a

2
C∗αβ|μa ∂[αηβ]ημ. (53)

Indeed, straightforward calculations output

a0int1 =
c0a

2
r∗μν|αβa [(∂μhνα − ∂νhμα) ηβ + (∂αhβμ − ∂βhαμ) ην
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− (∂μhνβ − ∂νhμβ) ηα − (∂αhβν − ∂βhαν) ημ] , (54)

a0int0 =
c0a

8
Rμν|αβ
a (hμαhνβ − hμβhνα) . (55)

In consequence, we obtained a possible form of the first-order deformation for the cross-
interactions between the Pauli—Fierz theory and the tensor fields raμν|αβ like

a0int = a0int0 + a0int1 + a0int2 , (56)

where the quantities in the right-hand side of (56) are expressed by (53)—(55). However,
a0int is trivial in the context of the overall non-integrated density aint of the first-order
deformation in the sense that it is in a trivial class of the local cohomology of the free
BRST differentialH0,D (s|d). Indeed, one can check that it can be put in a s-exact modulo
d form

a0int = c0as

∙
1

3
C∗μνa ημην −

1

2
C∗αβ|μa (hαμηβ − hβμηα)

+
1

2
r∗μν|αβa (hμαhνβ − hμβhνα)

¸
+ ∂μl

μ, (57)

and so it can be eliminated from aint by setting

c0a = 0. (58)

The second piece in (51), which is clearly non-trivial, appears to be more interesting.
Indeed, let us fix the trivial (γ-exact) contribution from the right-hand side of (51) to

b2 =
c00a

2
C∗αβ|a βhαγη

γ, (59)

which is equivalent to starting from

a00int2 = c00aC∗αβ|a β (∂αημ) η
μ. (60)

Then, it yields the component of antighost one as solution to the equation δa00int2 +γa00int1 =

∂μ
(1)

m00
int

μ

in the form

a00int1 = 2c00ar∗μαa (∂μhαλ + ∂αhμλ − ∂λhμα) η
λ. (61)

Next, we pass to the equation

δa00int1 + γa00int0 = ∂μ
(0)

m00
int

μ

, (62)

where

δa00int1 = −c
00a

2
Rμα
a (∂μhαλ + ∂αhμλ − ∂λhμα) η

λ. (63)

In the sequel we will show that there are no solutions to (62). Our procedure goes as
follows. Suppose that there exist solutions a00int0 to equation (62). Using formula (63), it
follows that such an a00int0 must be linear in the tensor fields raμν|αβ, quadratic in the Pauli—
Fierz field, and second-order in the derivatives. Integrating by parts in the corresponding
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functional constructed from a00int0 allows us to move the derivatives such as to act only on
the Pauli—Fierz fields, and therefore to work with

a00int0 = c00arμν|αβa alinμν|αβ (h∂∂h, ∂h∂h) , (64)

where the above notation signifies that alinμν|αβ is a linear combination of the generic poly-
nomials between parentheses (with the mixed symmetry of the tensor fields raμν|αβ). By
direct computation we get that

γa00int0 = ∂μ
¡
4c00aCαβ|νa alinμν|αβ

¢
− 4c00aCαβ|νa ∂μalinμν|αβ + c00arμν|αβa γalinμν|αβ, (65)

where
γalinμν|αβ = ālinμν|αβ (h∂∂∂η, ∂h∂∂η, ∂∂h∂η) , (66)

with η a generic notation for the Pauli—Fierz ghost ημ. As δa00int1 contains no ghosts from
the raμν|αβ-sector, we require that γa

00int
0 obeys the property

∂μalinμν|αβ (h∂∂h, ∂h∂h) = 0, (67)

such that
γa00int0 = ∂μ

¡
4c00aCαβ|νa alinμν|αβ

¢
+ c00arμν|αβa γalinμν|αβ. (68)

Simple calculations in (63) give

δa00int1 = ∂μp
μ + c00arμν|αβa blinμν|αβ (∂h∂∂η, ∂∂h∂η, η∂∂∂h) . (69)

Inserting (68)—(69) in (62) and observing that only blinμν|αβ contains terms that are third-
order in the derivatives of the Pauli—Fierz fields, we conclude that the existence of a00int0

is completely dictated by the behavior of blinμν|αβ. More precisely, a
00int
0 exists if and only if

the part of the type η∂∂∂h from blinμν|αβ vanishes identically and/or can be written like the
δ-variation of something like ∂h∗rη. Direct computation produces the part from blinμν|αβ of
order three in the derivatives of the Pauli—Fierz fields in the form

blinμν|αβ (η∂∂∂h) ∼ ηλ∂λ [σβν (∂μ∂
ρhρα + ∂α∂

ρhρμ −¤hαμ − ∂α∂μh)

− 1
2
σβνσαμ (∂

ρ∂γhργ −¤h) + ∂β∂νhαμ + (α←→ β, μ←→ ν)

− (β ←→ α, μ→ μ, ν → ν)− (μ←→ ν, α→ α, β → β)] , (70)

and it neither vanishes identically nor is proportional with δ
¡
∂λh

∗
αμ

¢
, as it can be observed

from expression (11) of the functions that define the field equations for the Pauli—Fierz
field. The rest of the terms from (70) are obtained from the first ones by making the
indicated index-changes. In conclusion, we must also take

c00a = 0 (71)

in (60), so aint2 = 0.
Now, we analyze the next possibility, namely I = 1

aint = aint0 + aint1 , (72)

where aint1 must be searched among the non-trivial solutions to the equation γaint1 = 0,
which are offered by

aint1 = α1
¡£
r∗μν|αβa

¤
, [h∗μν] ,

£
F a
μνλ|αβγ

¤
,
£
Kμν|αβ

¤¢
ω1
¡
ημ, ∂[μην]

¢
, (73)
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where the elements of pure ghost number one are¡
ημ, ∂[μην]

¢
. (74)

On the one hand, the assumption on the maximum derivative order of the interacting La-
grangian being equal to two prevents the coefficients α1 to depend on either the curvature
tensors or their space-time derivatives. On the other hand, aint1 can involve only the anti-
fields r∗μν|αβa and their space-time derivatives, because otherwise, as ω1 includes only the
Pauli—Fierz ghosts, it would not lead to cross-interactions between the fields raμν|αβ and
hμν . Moving in addition the derivatives from these antifields such as to act only on the
elements (74) from aint1 and relying again on the assumption on the maximum derivative
order, we eventually remain with one possibility (up to γ-exact quantities)

aint1 ∼ kar∗μν|αβa

¡
σμα∂[ν ηβ] − σμβ∂[ν ηα] + σνβ∂[μηα] − σνα∂[μηβ]

¢
= 4kar∗νβa ∂[ν ηβ] ≡ 0, (75)

which vanishes identically due to the symmetry of the trace of the antifields r∗μν|αβa .
As aint1 in (75) vanishes, we remain with one more case, namely where aint reduces to

its antighost number zero piece

aint = aint0
¡£
raμν|αβ

¤
, [hμν ]

¢
, (76)

which is subject to the equation

γaint0 = ∂μ
(0)
m

μ

int. (77)

There are two types of solutions to (77). The first one corresponds to
(0)
m

μ

int = 0 and
is given by arbitrary polynomials that mix the curvature tensors (35) and their space-
time derivatives with the linearized Riemann tensor (12) and its derivatives, which are
however excluded from the condition on the maximum derivative order of aint0 (their

derivative order is at least four). The second one is associated with
(0)
m

μ

int 6= 0, being
understood that we discard the divergence-like solutions aint0 = ∂μz

μ and preserve the
maximum derivative-order restriction. Denoting the Euler—Lagrange derivatives of aint0 by
B

μν|αβ
a ≡ δaint0 /δraμν|αβ and respectively by Dμν = δaint0 /δhμν , we get that equation (77)
implies

∂μB
μν|αβ
a = 0, ∂μD

μν = 0. (78)

The tensors Bμν|αβ
a and Dμν are imposed to contain at most two derivatives and to have

the mixed symmetry of raμν|αβ and respectively of hμν. Meanwhile, they must yield a

Lagrangian density aint0 that effectively couples the two sorts of fields, so Bμν|αβ
a and Dμν

effectively depend on hμν and respectively on raμν|αβ. The solutions to equations (78) are
of the type

δaint0
δraμν|αβ

≡ Bμν|αβ
a = ∂ρ∂γΦ̂

μνρ|αβγ
a ,

δaint0
δhμν

≡ Dμν = ∂α∂βΦ̃
μα|νβ, (79)

where Φ̂μνρ|αβγ
a and Φ̃μα|νβ depend only on the undifferentiated fields hμν and raμν|αβ (oth-

erwise, the corresponding aint0 would be more than second-order in the derivatives), with
Φ̂
μνρ|αβγ
a having the mixed symmetry of the curvature tensors F μνρ|αβγ

a and Φ̃μα|νβ that of
the linearized Riemann tensor. We introduce a derivation on the algebra of non-integrated
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densities depending on raμν|αβ, hμν and on their derivatives, that counts the powers of the
fields and their derivatives

N̄ =
X
n≥0

⎡⎣¡∂μ1...μnraμν|αβ¢ ∂

∂
³
∂μ1...μnr

a
μν|αβ

´ + (∂μ1...μnhμν) ∂

∂ (∂μ1...μnhμν)

⎤⎦ , (80)

and observe that the action of N̄ on an arbitrary non-integrated density ū
³h

raμν|αβ

i
, [hμν ]

´
is

N̄ū = raμν|αβ
δū

δraμν|αβ
+ hμν

δū

δhμν
+ ∂μr

μ, (81)

where δū/δraμν|αβ and δū/δhμν denote the variational derivatives of ū. In the case where
ū is a homogeneous polynomial of order p > 0 in the fields and their derivatives, we have
that N̄ū = pū, and so

ū =
1

p

Ã
raμν|αβ

δū

δraμν|αβ
+ hμν

δū

δhμν

!
+ ∂μ

µ
1

p
rμ
¶
. (82)

As aint0 can always be decomposed as a sum of homogeneous polynomials of various orders,
it is enough to analyze the equation (77) for a fixed value of p. Putting ū = aint0 in (82)
and inserting (79) in the associated relation, we can write

aint0 =
1

p

³
raμν|αβ∂ρ∂γΦ̂

μνρ|αβγ
a + hμν∂α∂βΦ̃

μα|νβ
´
+ ∂μr̄

μ. (83)

Integrating twice by parts in (83) and recalling the mixed symmetries of Φ̂μνρ|αβγ
a and

Φ̃μα|νβ, we infer that

aint0 = k1F
a
μνρ|αβγΦ̂

μνρ|αβγ
a + k2Kμα|νβΦ̃

μα|νβ + ∂μl̄
μ, (84)

with k1 = 1/9p and k2 = −1/2p. By computing the action of γ on (84), we obtain that
p = 2 and

aint0 = k0aRμα
a hμα. (85)

As the above aint0 vanishes on the stationary surface of field equations for raμν|αβ, it is trivial
in H0,D (s|d), so it can be removed from the first-order deformation by choosing

k0 = 0. (86)

Putting together the results obtained so far, we can state that Sint1 = 0 and so

S1 = Sh1 + Sr1, (87)

where Sh1 is the first-order deformation of the solution to the master equation for the
Pauli—Fierz theory and Sr1 is given in the right-hand side of (26). The consistency of
S1 at the second order in the coupling constant is governed by equation (20), where¡
Sh1 , S

r
1

¢
= 0 = (Sr1, S

r
1), and thus we have that S

r
2 = 0 = Sint2 , while S

h
2 is highly non-

trivial and is known to describe the quartic vertex of the Einstein—Hilbert action, as well
as the second-order contributions to the gauge transformations and to the associated non-
Abelian gauge algebra. The vanishing of Sint1 and Sint2 further leads, via the equations
that stipulate the higher-order deformation equations, to the result that actually

Sintk = 0, k ≥ 1. (88)
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The main conclusion of this paper is that, under the general conditions of analyticity
in the coupling constant, space-time locality, Lorentz covariance, and Poincaré invariance
of the deformations, combined with the requirement that the interacting Lagrangian is at
most second-order derivative, there are no consistent, non-trivial cross-couplings between
the Pauli—Fierz field and a collection of massless tensor fields with the mixed symmetry
of the Riemann tensor. The only pieces that can be added to action (1) are given by
some cosmological terms for the tensors raμν|αβ and, naturally, by the self-interactions of
the Pauli—Fierz field, which produce the Einstein—Hilbert action, invariant under diffeo-
morphisms.
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