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Abstract

Under the hypotheses of smoothness in the coupling constant, locality, Lorentz covariance,
and Poincare invariance of the deformations, combined with the preservation of the number of
derivatives on each field, the consistent interactions between a collection of free massless tensor
gauge fields with the mixed symmetry of a two-column Young diagram of the type (3,1) and one
Abelian vector field are addressed. The main result is that a single mixed symmetry tensor field
from the collection gets coupled to the vector field. Our final result resembles to the well known
fact from General Relativity according to wich there is one graviton in a given world.

1 Introduction

Tensor fields in “exotic” representations of the Lorentz group, characterized by a mixed Young sym-
metry type [1, 2, 3, 4, 5, 6, 7], held the attention lately on some important issues, like the dual
formulation of field theories of spin two or higher [8, 9, 10, 11, 12, 13, 14], the impossibility of con-
sistent cross-interactions in the dual formulation of linearized gravity [15], a Lagrangian first-order
approach [16, 17] to some classes of massless or partially massive mixed symmetry type tensor gauge
fields, suggestively resembling to the tetrad formalism of General Relativity, or the derivation of some
exotic gravitational interactions [18, 19]. An important matter related to mixed symmetry type ten-
sor fields is the study of their consistent interactions, among themselves as well as with higher-spin
gauge theories [20, 21, 22, 23, 24, 25, 26, 27, 28]. The most efficient approach to this problem is
the cohomological one, based on the deformation of the solution to the master equation [29]. The
purpose of this paper is to expose the main result on the consistent interactions between a collection
of massless tensor gauge fields, each with the mixed symmetry of a two-column Young diagram of
the type (3, 1) and one vector field [30]. It is worth mentioning the duality of a free massless tensor
gauge field with the mixed symmetry (3, 1) to the Pauli-Fierz theory in D = 6 dimensions and, in
this respect, some developments concerning the dual formulations of linearized gravity from the per-
spective of M -theory [31, 32, 33]. Our analysis relies on the deformation of the solution to the master
equation by means of cohomological techniques with the help of the local BRST cohomology, whose
component in a single (3, 1) sector has been reported in detail in [34]. This paper generalizes our
results from [35] regarding the cross-interactions between a single massless (3, 1) field and a vector
field. Under the hypotheses of analiticity in the coupling constant, locality, Lorentz covariance, and
Poincaré invariance of the deformations, combined with the preservation of the number of derivatives
on each field, we find a deformation of the solution to the master equation that provides nontrivial
cross-couplings. This case corresponds to a 5-dimensional spacetime and is described by a deformed
solution that stops at order two in the coupling constant. The interacting Lagrangian action contains
only mixing-component terms of order one and two in the coupling constant, but only one mixed
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symmetry tensor field from the collection gets coupled to the vector field, while the others remain free.
At the level of the gauge transformations, only those of the vector field are modified at order one
in the coupling constant with a term linear in the antisymmetrized first-order derivatives of a single
gauge parameter from the (3, 1) sector such that the gauge algebra and the reducibility structure of
the coupled model are not modified during the deformation procedure, being the same like in the case
of the starting free action. Our result is interesting since it exhibits strong similarities to the Einstein
gravitons from General Relativity, in the sense that no nontrivial cross-couplings between different
fields with the mixed symmetry (3, 1) are allowed, neither direct nor intermediated by a vector field.

2 Free model. BRST symmetry

We begin with the Lagrangian action

S0
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]
=

∫
dDx{1

2
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∂ρt

A
λµν|α

)
−

(
∂αt

λµν|α
A

)(
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) (
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A

) (
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)
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) (
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FµνF

µν} ≡ St
0

[
tAλµν|α

]
+ SV

0 [Vµ] , (1)

in D≥ 5 spacetime dimensions, with A= 1, n and n ≥ 2. Each massless tensor field tAλµν|α has the
mixt symmetry (3, 1) and hence transforms according to an irreducible representation of GL (D, R)
correponding to a 4-cell Young diagram with two columns and three rows. It is thus completly
antisymmetric in its first three indices and satisfies the identity tA[λµν|α] ≡ 0. The collection of indices
A,B, etc., are raised and lowered with a quadratic form kAB that defines a positively-defined metric
in the internal space. It can always be normalized to δAB by a simple linear field redefinition, so one
can take kAB = δAB and re-write (1) as

S0

[
tAλµν|α, Vµ

]
=

∫
dDx

[
n∑

A=1

Lt
0

(
tAλµν|α, ∂ρt

A
λµν|α

)
+ LV

0 (Vµ, ∂νVµ)

]
(2)

where Lt
0

(
tAλµν|α, ∂ρt

A
λµν|α

)
is the Lagrangian density for the field A. The field strength of the

vector field Vµ is defined in the standard manner by

Fµν = ∂µVν − ∂νVµ (3)

The notation [λ...α] signifies complete antisimmetry with respect to the (Lorentz) indices between
brackets, with the convetions that the minimum number of terms is always used and the result is never
divided by the number of terms. The trace of tAλµν|α is defined by tAλµ = σναtAλµν|α and it is obviously
an antisymmetric tensor. Everywhere in this papaer we employ the flat Minkowski metric of ‘mostly
plus’ signature σµν = σµν = (−, +, +, +, + · ··)

A generating set of gauge transformations for the action (1) can be taken of the form

δε,χtAλµν|α = −3∂[λεA
µνα] + 4∂[λεA

µν]α + ∂[λχA
µν]|α, (4)

δεVµ = ∂µε (5)

where the gauge parameters εA
µνα determine n completely antisymmetric tensors, the other set of

gauge parameters displays the mixed symmetry (2, 1), such that they are antisymmetric in the first two
indices and satisfy the identity χA

[µν|α] = 0, and the gauge parameter ε is a scalar. The generating set
of gauge transformations (4− 5) is off-shell, second-stage reducible, the accompanying gauge algebra
being obviously Abelian.

The construction of the antifield-BRST symmetry for this free theory debuts with the identification
of the algebra on which the BRST differentia s acts. The generators of the BRST algebra are of two
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kinds: fields/ghosts and antifields. The ghost spectrum for the model under study comprises the
fermionic ghosts

{
ηA

λµν ,GA
µν|α, η

}
associated with the gauge parameters

{
εA
λµν , χ

A
µν|α, ε

}
from (4− 5),

the bosonic ghosts for ghosts
{
CA

µν , CA
να

}
due to the first-stage reducibility relations, and also the

fermionic ghosts for ghosts CA
ν corresponding to the second-stage reducibility relations. We ask that

ηA
λµν and CA

µν are completely antisymmetric, GA
µν|α display the mixed symmetry (2, 1), and CA

να are

symmetric. The antifield spectrum is organized into the antifields
{

t
∗λµν|α
A , V ∗µ

}
of the original

tensor fields, together with those of the ghosts,
{

η∗λµν
A ,G∗µν|α

A , η∗
}

,
{
C∗µν

A , C∗να
A

}
, and respectively

C∗ν
A , of statistics opposite to that of the associated fields/ghosts. It is understood that t

∗λµν|α
A exhibit

the same mixed-symmetry properties like tAλµν|α and similarly with respect to η∗λµν
A ,G∗µν|α

A , C∗µν
A , and

C∗να
A . For subsequent purpose, we denote the trace of t

∗λµν|α
A by t∗λµ

A , being understood that it is
antisymmetric.

Since both the gauge generators and reducibility functions for this model are field-independent, it
follows that the BRST differential s simply reduces to

s = δ + γ (6)

where δ represents the Koszul-Tate differential, graded by the antighost number agh (agh (δ) = −1)
and γ stands for the exterior derivative along the gauge orbits, whose degree is named pure ghost
number pgh (pgh (γ) = 1). The overall degree that grades the BRST complex is known as the ghost
number (gh) and is defined like the difference between the pure ghost number and the antighost
number, such that gh (s) = gh (δ) = gh (γ) = 1. According to the standard rules of the BRST
method, the corresponding degrees of the generators from the BRST complex are valued like

pgh
(
ηA

λµν

)
= pgh

(
GA

µν|α
)

= pgh (η) = 1

pgh
(
CA

µν

)
= 2 = pgh

(CA
να

)
, pgh

(
CA

ν

)
= 3

agh
(
t
∗λµν|α
A

)
= 1 = agh (V ∗µ) ,

agh
(
η∗λµν

A

)
= agh

(
G∗µν|α

A

)
= agh (η∗) = 2,

agh
(
C∗µν

A

)
= 3 = agh (C∗να

A ) , agh (C∗ν
A ) = 4,

plus the usual rules that the degrees of the original fields, the antighost number of the ghosts and
the pure ghost number of the antifields all vanish. The actions of δ and γ on the generators from the
BRST complex are given by

γtAλµν|α = −3∂[ληA
µνα] + 4∂[ληA

µν]α + ∂[λGA
µν]|α, γVµ = ∂µη, (7)

γηA
λµν = −1

2
∂[λCA

µν], γη = 0, (8)

γGA
µν|α = 2∂[µCA

να] − 3∂[µCA
ν]α + ∂[µCA

ν]α, (9)

γCA
µν = ∂[µCA

ν], γCA
να = −3∂(νC

A
α), γCA

ν = 0, (10)

γt
∗λµν|α
A = γV ∗µ = γη∗λµν

A = γG∗µν|α
A = γη∗ = 0 (11)

γC∗µν
A = γC∗να

A = γC∗ν
A = 0, (12)

δtAλµν|α = δVµ = δηA
λµν = δGA

µν|α = δη = 0 (13)

δt
∗λµν|α
A = T

λµν|α
A , δV ∗µ = −∂νF

νµ, δη∗λµν
A = −4∂αt

∗λµν|α
A , (14)

δG∗µν|α
A = −∂λ

(
3t
∗λµν|α
A − t

∗µνα|λ
A

)
, δη∗ = −∂µV ∗µ, (15)
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δC∗µν
A = 3∂λ

(
G∗µν|λ

A − 1
2
η∗λµν

A

)
, δC∗να

A = ∂µG∗µ(ν|α)
A , (16)

δC∗ν
A = 6∂µ

(
C∗µν

A − 1
3
C∗µν

A

)
, (17)

where T
λµν|α
A are minus the Euler-Lagrange derivatives of action (1) with respect to the field tAλµν|α.

The Lagrangian Brst differential admits a canonical action in a structure named antibracket and
defined by decreeing the fields/ghosts conjugated with the corresponding antifields, s· = (·, S), where
(, ) signifies the antibracket and S denotes the canonical generator of the BRST symmetry. It is a
bosonic functional of ghost number zero(involving both field/ghost and antifield spectra) that obeys
the master equation (S, S) = 0. The master equation is equivalent with the second-order nilpotency
of s, where its solution S encodes the entire gauge structure of the associated theory. The complete
solution to the master equation for the free model under study is given by

S = S0

[
tAλµν|α, Vµ

]
+

∫
dDx[t∗λµν|α

A

(
3∂αηA

λµν + ∂[ληA
µν]α + ∂[λGA

µν]|α
)

−1
2
η∗λµν

A ∂[λCA
µν] + G∗µν|α

A

(
2∂αCA

µν − ∂[µCA
ν]α + ∂[µCA

ν]α

)

+C∗µν
A ∂[µCA

ν] − 3C∗να
A ∂(νC

A
α) + V ∗µ∂µη]. (18)

3 Brief review of the deformation procedure

The reformulation of the problem of consistent deformations of a given action and of its gauge sym-
metries in the antifield-BRST setting is based on the observation that if a deformation of the classical
theory can be consistently constructed, then the solution to the master equation for the initial theory
can be deformed into the solution of the master equation for the interacting theory

S = S + gS1 + g2S2 + O
(
g3

)
, ε

(
S

)
= 0, gh

(
S

)
= 0 (19)

such that (
S, S

)
= 0. (20)

The projection of (20) on the various powers of the coupling constant induces the following tower
of equations:

g0 : (S, S) = 0, (21)

g1 : (S1, S) = 0, (22)

g2 :
1
2

(S1, S1) + (S2, S) = 0, (23)

...

The first equation is satisfed by hypothesis. The second governs the first-order deformation of
the solution to the master equation, S1 and shoes that S1 is a BRST co-cycle, sS1 = 0. This means
that S1 pertains to the ghost number zero cohomological space of s, H0 (s), which is generically non-
empty because it is isomorphic to the space of physical observables of the free theory. The remaining
equations are responsible for the higher-order deformations of the solution to the master equation.
Once that the deformation equations (21-23), etc., have been solved by means of specific cohomological
techniques, from the consistent nontrivial deformed solution to the master equation one can extract
all the information on the gauge structure of the resulting interacting theory.

233



4 Main results

The aim of the papaer is to investigate the consistent interactions that can be added to the initial
action without modifying either the field spectrum or the number of independent gauge symmetries.

We consider only smooth, local, and manifestly covariant deformations and restrict to Poincare-
invariant quantities, i.e. we do not allow explicit dependence on the spacetime coordinates.

We ask that the deformed gauge theory preserves the Cauchy order of the uncoupled model, which
enforces the requirement that the interacting Lagrangian is of maximum order equal to two in the
spacetime derivatives of the fields at each order in the coupling constant.

There appear two distinct solutions that exclude each other.
The first type of solution stops at order one in the coupling constant and reads as

S = S +
g

3 · 4!

∫
d5xελµνρκFλµFνρVκ, (24)

where S is given in (1) in D = 5.
This case is not interesting since it provides no cross-couplings between the vector field and the

tensor field. It simply restricts the free Lagrangian action to evolve on a five-dimensional space-
time and adds to it a generalized Abelian Chern-Simons term, without changing the original gauge
transformations and, in consequence, neither the original Abelian gauge algebra nor the reducibility
structure.

The second type of full deformed solution to the master equation ends at order two in the coupling
constant and is given by

S = S + g

n∑

A=1

[
yA

∫
d5xελµνρκ

(
V ∗

λFA
µνρκ −

2
3
Fλµ∂[ξt

A
νρκ]|θσ

θξ

)]

+
16g2

3

n∑

A,B=1

[
yAyB

∫
d5x

(
∂[ξt

A
νρκ]|θσ

θξ
)

∂[ξ
′
tBνρκ]|θ′σθ′ξ′

]
, (25)

where all FA
µνρκ have the pure ghost number equal to one and are defined like the antisymmetrized

first-order derivatives of the ghosts from the sector (3, 1)

FA
µνρκ ≡ ∂[µηA

νρκ] (26)

These are in fact the only non-trivial elements with the pure ghost number equal to one from
the cohomology of the exterior derivative along the gauge orbits, H (γ). The quantities yA are n
arbitrary, real numbers and ελµνρκ is the Levi-Civita symbol in D = 5. This solution ‘lives’ also in
a five-dimensional space-time. From (25) we read all the information on the gauge structure of the
coupled theory. The terms of antighost number zero in (25) provide the Lagrangian action. They can
be equivalently organized as

S0

[
tAλµν|α, Vµ

]
= St

0

[
tAλµν|α

]
− 1

4

∫
d5xFµνF

µν
, (27)

in terms of the deformed field strength

F
µν = Fµν +

4g

3
εµναβγ

n∑

A=1

(
yA∂[ρt

A ρ
αβγ]|

)
, (28)

where St
0

[
tAλµν|α

]
is the Lagrangian action of the massless tensor fileds tAλµν|α appearing in (1) in

D = 5. We observe that the action (27) contains only mixing-component terms of order one and two
in the coupling constant. The piece of antighost number one appearing in (25) gives the deformed
gauge transformations in the form
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δε,χtAλµν|α = −3∂[λεA
µνα] + 4∂[λεA

µν]α + ∂[λχA
µν]|α, (29)

δε,χV µ = ∂µε + 4gεµαβγδ
n∑

A=1

(
yA∂αεA

βγδ

)
. (30)

Ŷ = MT Y M , (31)

with MT the transposed of M , such that Ŷ is diagonalized and a single diagonal element(for
definiteness, we take the first) is non-vanishing

Ŷ 11 =
n∑

A=1

(
yA

)2 ≡ y2, Ŷ 1A
′
= Ŷ B

′
1 = Ŷ A

′
B
′
= 0, A

′
, B

′
= 2, n. (32)

If we make the notation

ŷA = MACyC , (33)

then relation (32) implies

ŷA = yδA
1 . (34)

Now, we make the linear field redefinition

tAλµν|α = MAC t̂Cλµν|α, (35)

with MAC the elements of M . It is easy to see that this transformation leaves St
0

[
tAλµν|α

]
invariant

(it remains equal to a sum of free actions, one for every transformed field t̂Aλµν|α from the collection)
and, moreover, the deformed action (27) becomes

S0

[
tAλµν|α, Vµ

]
= St

0

[
t̂Aλµν|α

]
− 1

4

∫
d5xF

′
µνF

′µν , (36)

where
F
′µν = Fµν +

4g

3
yεµναβγ∂[ρt

1 ρ
αβγ]| . (37)

Action (36) is invariant under the gauge transformations

δε̂,χ̂t̂Aλµν|α = −3∂[λε̂A
µνα] + 4∂[λε̂A

µν]α + ∂[λχ̂A
µν]|α, (38)

δε̂,χ̂V µ = ∂µε + 4gyεµαβγδ∂αε̂1
βγδ. (39)

where now the new gauge parameters are

ε̂A
µνα = εB

µναMBA, χ̂A
µν|α = χB

µν|αMBA (40)

In conclusion, one cannot couple different fields with the mixed symmetry (3, 1) through a vector
field. A single field of this kind may be non-trivially coupled in D = 5, while the others remain free.

5 Conclusion

In this paper we have shown the rigidity of the couplings of a collection of tensor fields with the mixed
symmetry (3, 1) to a vector field. Our final result resembles to the well known fact from the General
Relativity according to which there is one graviton in a given world. This is not a surprise since the
action of a free tensor field with the mixed symmetry (3, 1) is dual to the linearized gravity (in D = 6).
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