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Irreducible Dirac bracket for gauge-fixed four-forms
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Abstract

The Dirac bracket for a model involving four-form gauge fields is derived initially along an re-
ducible manner and subsequently we following an alternative irreducible treatment. All approaches
lead to the same results.

1 Introduction

The main aim of this paper is to construct the Dirac bracket for a third-order reducible model involving
four-form gauge fields. The canonical approach of the system with reducible second-class constraints
represents a difficult problem (not all the second-class constraint functions are independent), demand-
ing a modification of the usual rules as the matrix of the Poisson brackets among constraints is no
longer invertible.

In order to construct the Dirac bracket for such system in a consistent manner we have the following
options: i) to isolate a maximally set of independent constraint functions and then build the Dirac
bracket in terms of this smaller set [1]-[2]; ii) to construct the Dirac bracket in terms of a noninvertible
matrix without separating the independent constraint functions [3]-[7]; iii) to substitute the reducible
second-class constraints by some equivalent irreducible ones [by an appropiate enlarging of the original
phase-space] and further work with the Dirac bracket based on the irreducible constraints [8]-[10].

2 Third-stage reducible second-class constraints

We start with a system whose phase-space is locally parametrized by N canonical pairs z% = (qi, Di)
subject to the third-stage reducible second-class constraints

Xao (2%) 0, ag =1, My, (1)
ZaOiOXao = 0, a1 =1, M, (2)
7,20 7,20 0, ag = T, Mg, (3)
7220 ~ 0, az =1, M, (4)

These constraints are purely second-class if any maximal, independent set of M = My — M + My — Mj
constraint functions x4, A =1, M among the x4, is such that the matrix

CaB = [xa, x5, (5)

is invertible.
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The first idea is to construct the Dirac bracket in terms of such a set of independent constraints.
In this case the Dirac bracket takes the form

[F7G]*: [F7G]_[F7XA}MAB[X37G]> (6)

where MABCpe ~ (5%.
The split of the constraints may lead to the loss of important symmetries, so it should be avoided.
A second idea is to construct the Dirac bracket in terms of a noninvertible matrix without separat-
ing the independent constraint functions. In this sense, we denote the matrix of the Poisson brackets
among the second-class constraint functions by

Coéoﬁo = [Xaoa Xﬁo]‘ (7)

The matrix C,, 3, is not invertible because
Z " Conpy = 0. (8)
If fla"‘ol stand for some functions that satisfy
rank (Zaoioflaﬁol) = rank (Daﬁll) = My — Ms + Ms, (9)
then we can introduce another matrix M% through the relations
Cogyo M ~ Do =60 — A 70, (10)
with M@0fo = —pgBoco gych that the bracket
[F.G]" = [F,G] = [F, Xao] M*™ [xg,, G, (11)

defines the same Dirac bracket like (6) on the surface (1).

3 The model

We consider the canonical approach to gauge-fixed four-forms with generalized abelian Chern-Simons
coupling. The canonical analysis of this model leads to the first-class constraints

1
GLl, = Moiizis 20, (12)
) N
Xt = =4 (0 Thiviais + S0nisisisisiginis 707 ) 2 0, (13)

where the momentum 7,,,) are respectively conjugated to A*” PA and

Fijisigizis = 8[7;4Ai5i67;7i8]' (14)
In order to fix the gauge, we have to choose a set of canonical gauge conditions. An appropriate set
of such gauge conditions is given by

Gz = A0jij2ds o 0, (15)
X(z)j1j2j3 = _8kAkj1j2j3 ~ 0. (16)

The relations (12)-(13) and (15)-(16) represent nothing but some third-stage reducible second-class
constraints. It is simple to see that (12) and (15) generate a submatrix (of the matrix of the Poisson
brackets among the constraint functions) of maximum rank, therefore they are not relevant by virtue
of our approach. Thus in the following we examine only the constraints (13) and (16), which we
organize as
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(1)
— Xiqioi ~
Xeo = ( (Piigads ) ~ 0. (17)

The second-class constraint functions from (17) are third-stage reducible, with the first-, second-
and third-stage reducibility functions given by

1 s[i1 sio o
e (M e ) "
(63} 1 2 ’
0 5[]‘1 6]'28]'3]
1 5lk1 gko) m1
50m, 0™ 0 0 0
Loy = 2o n ) Z% = : (19)
: ( 0 00 ) ’ ( 0 O, )
The matrix of the Poisson brackets among the constraints (17) is expressed by
0 A D} ks
CO‘OBO = ( _ADj1j2j3 (1)2 : ’ (20)
lilals
where - "y
1 sk2 J1 £J2 9j3]
Djl-jQ-j?’ . l 5]‘1 5j26j3 _ 5[i15i2 8i3]5k1 5]628J3 (21)
11293 T 3| [i1 712 Vi) 2A )
and A = 9%0y.

4 ”Reducible” Dirac bracket

Now, we construct the Dirac bracket with respect to the constraints (17). In order to construct the
matrices Dafo we take Aaﬁo1

1 cki gk
AP — 1590, %z i .0 o . (22)
" 0 s oho
Then, by means of (10) we find
kikak
D = ( Dijiiy” 0 ) . (23)
0 D]1]2]3
l1l2l3
Using (20) and (23) it follows that (10) is fulfilled for
0 _ 1 puizis
MoBo — ( I AP kikaks ) ) (24)
& D552 0

With M5 at the hand, we can construct the Dirac bracket by means of formula (11).
After some computation, we find that the only non-vanishing fundamental Dirac brackets are

{Ai1i2i3i4 (x)a T j1725374 (y)] = Dﬁﬁlﬂi@ﬁld (i o y) ’ (25)

*
20=40

where

(26)

[i1 cin siz aig] sk1 sz ok
Di1i2i3i4 _ l (5i1 6i25i35i4 N 5k1 6k225k338l4]6[j115j226j§aj4]
J1j2gzia T 4) [71 7727 73" j4] A ’

In this way, the Dirac analysis (reducible) of this model is completed.

5 Irreducible analysis

In this section we reobtain the Dirac bracket (25) but in an irreducible manner.
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5.1 Original phase-space approach

Initially, we investigate the problem of the construction of Dirac bracket for our model in the original
phase-space in terms of an invertible matrix. It can be proved that for systems with third-stage
reducible second-class constraints the Dirac bracket can be written in terms of an invertible matrix.

Theorem 1 There exists an invertible antisymmetric matriz % such that the Dirac bracket (11)
takes the form
[F.G]" = [F,G] — [F, Xao) 1% [x4, G]. (27)

on the surface (1).

In the case of our model the matrix ;0% takes the form

1 i <l
#aoﬁo — ( [ZO L JIs] _3'7A5[1i15k225k?:;] > . (28)
3!%5].115]25]}; 0

By computing the fundamental Dirac bracket with the help of (27), we reobtain precisely

AT @), Bjgagiga ()] 0 = DIERAS (%= 9) (29)
5.2 Extended phase-space approach

In the sequel we construct some equivalent irreducible second-class constraints associated with (1) such
that the Dirac bracket constructed with respect to irreducible set coincides with the Dirac bracket
corresponding to the reducible second-class model.

Firstly we introduce some new variables (ya,),, 157 and (Yas),,—757; With the Poisson brackets

[yavyﬁJ = Way 61 [ya:svyﬁ:s] = Wasfss [yoauyazs] =0, (30)

where the elements w,, 3, define an invertible, antisymmetric matrix (similar for wy,g,), and consider
the system subject to the reducible second-class constraints

Xag =~ 0, Yoy = 0, Yoz = 0. (31)

The Dirac bracket on the phase-space locally parameterized by (2%, Ya,, Yas) corresponding to the
above second-class constraints reads as

[F, G]*’z,y = [F,G] = [F, Xao] MaOﬁO (X80 G]

- [Fv yal] walﬁl [yﬁu G] - [Fv yag] WQSﬁS [yﬁ3’ G] ) (32)

where the Poisson brackets from the right-hand side of (32) contain derivatives with respect to all
29’8, Yo, s and Yu;'s.
After some computation we infer that

[F.GIL., =~ [F.GT, (33)

where [F,G]" is given by (27).
Under these considerations, we are able to formulate the following theorem.

Theorem 2 There exists a set of constraints

Xao = Xao + Aag'Yay =0, (34)
Xaz = Zog'Yar + Auy?Yas =0, (35)

such that:
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i) (34)-(35) is equivalent with (31) [this means that both sets describe the same surface in the
enlarged phase-space/
Xao X 0, Xas ® 0 Xag ® 0, Yoy =0, Yoz = 0; (36)

it) irreducible second-class behavior, i.e. the matriz
Canr = [Xa, Xal, (37)

1s invertible, where
)ZA = (5(0407 5(042) . (38)

The functions 43! are defined by the relation
A=A, (39)

where égll are the elements of an invertible matrix. In the formula (35) A, are some functions that

satisfy
rank (Zaoi‘ongf) = rank (Do/ff) = Ms, (40)

The existence of such functions is guaranteed by the fact that the second-class constraints (1) are
third-stage reducible (2)—(4).
The matrix Caas takes the concrete form

ZaoélwalﬁlAﬂol Zaaglwalﬁ Zﬁ; + Ao?;gwa333A[323
where A = (ag, ag) indexes the line and A’ = (fy, 32) the column and its inverse reads as
Bopo 7 Bogm ,o1M1 A P2
AN % €q W
c = A B2,,0121 571 7 po n 1ﬂ2p2 M ) (42)
Aa’l w e)\l Z’Yl d}
where we used the notation
A A1 g N o3, A D
W = A M ALY + Z 2 DI T D I Z e (43)

By means of result (42), the Dirac bracket associated with the irreducible second-class constraints
(34)—(35)
[F7 G]*| = [Fv G] - [F7 XA] CAA [)ZA’: G] ) (44)

ired —
takes the concrete form
[F,G lea =[Gl = [F, Xa] 1™ X3y, Gl
— [F, Rao) 220680 M A2 [, G
— [F, Xaa] A52w M 2% [y, G
— [, Xeo] (AP0 M AR
+Z2 DN D 22 ) [, Gl (45)

The matrix Dﬁ?‘ is the inverse of Daﬁ;.

Theorem 3 The Dirac bracket with respect to the irreducible second-class constraints coincides with
that of the intermediate system

[F7 G]*’ired ~ [F7 G]*‘z,y : (46)
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6 ”"Irreducible” Dirac bracket

In order to construct the irreducible second-class constraints for our model we introduce the new

variables y,, and yq,
Yai = < lellfz > ) Yaz = ( @ > ) (47)

and take .
0 —50110.73 0 —1
_ 27 i1 2] _
Wai 81 = ( 1 ¢j1 5J2 ) ’ WasBs = ( ) . (48)
In the analyzed model the functions A2 and A3 are given by
1 k1 sk
aor— [ TP % O (49)
a0 0 ~Lssparl )
d, O
AP = < (’) i ) : (50)
Then, the equivalent irreducible second-class constraints are expressed by
Uinis = —4 (0" hiviziy + oinizigiaisisizis P27 ) = 9, Pryiyy & 0, (51)
)2(2)j1j2j4 = —9 A58 _ 18[j1Bj2j3] ~ 0 (52)
3 )
W=~y +0up~0, (53)
X2 = —29,BU 4 3 ~ 0. (54)

Now, we construct the Dirac bracket with respect to the irreducible second-class constraints (51)-(54).

In order to construct the elements of the matrix C2'2”, we choose égll and flﬁf % like
| in i
- 1 gi1 gt
1 sk
Br 0 1 5[]& o2l |- (55)
2A %
The matrix DBU;’ reads as
_ % 0
g3 __
Dg’ = 0 i . (56)

If we compute the Dirac bracket among the original field/momenta on behalf of (45), we reobtain the
same fundamental non-vanishing Dirac brackets like in the reducible situation, namely

{A’”W‘* (@), 7Tj1j2j3j4(3/)]x0:y0 = D}y 5oisd X —¥)- (57)

7 Conclusion

In this paper we have presented some equivalent approaches for the problem of the derivation of the
Dirac bracket for a system with third-order reducible second-class constraints. Our strategy includes
three main steps: firstly, we constructed the Dirac bracket in terms of a noninvertible matrix M5,
then, we derived the Dirac bracket based on an invertible matrix p®? and finally we substituted
the original second-class constraints by some equivalent irreducible ones in an enlarged phase-space
and the Dirac bracket in this case is equivalent with those in the above mentioned approaches. The
fundamental Dirac brackets with respect to the original variables derived within the irreducible and
original reducible settings coincide.
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