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Abstract

Consistent couplings between a set of vector fields and a system of massless Dirac spinors are
addressed in the framework of the antifield-BRST deformation procedure.

1 Introduction

In this paper we investigate the problem of the construction of all consistent couplings between a
collection of abelian 1-forms and a set of massless Dirac fields in D = 4. This problem is solved
using the deformation technique of the solution to the classical master equation [1] combined with
the local BRST cohomology [2]–[4]. The consistent cross-couplings are derived under the following
hypotheses: space-time locality, analyticity of the deformations in the coupling constant, (background)
Lorentz invariance, Poincaré invariance (i.e. we do not allow explicit dependence on the spacetime
coordinates), preservation of the number of derivatives on each field (such that the differential order of
the deformed field equations is preserved with respect to the free model) and the interacting Lagrangian
contains at most two space-time derivatives.

2 BRST symmetry of the free model

Our starting point is the free theory that involves a collection of abelian 1-forms and a system of
massless Dirac fields in D = 4

SL
0

[
Aa

µ, ψA, ψ̄A

]
=

∫
d4x

[
−1

4
F a

µνF
µν
a

+
i
2
ψ̄Aγµ∂µψA − i

2

(
∂µψ̄A

)
γµψA

]
. (1)

In (1) we used two internal positively-defined metrics kab and gAB that raise or low the latin indices
of the 1-forms and respectively of the Dirac spinors.

Also, we employed the notation F a
µν for the field-strength of the 1-form Aa

µ (F a
µν ≡ ∂[µAa

ν]).
The free theory possesses the generating set of gauge transformations

δεA
a
µ = ∂µεa, δεψA = δεψ̄A = 0. (2)

The gauge parameters εa are bosonic, and the gauge algebra is Abelian.
The gauge transformations (2) are independent or, in other words, the generating set of gauge

transformations is irreducible.
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In order to construct the BRST symmetry for (1) we introduce the field, ghost, and antifield
spectra

ΦΓ0 =
(
Aa

µ, ψA, ψ̄A

)
, Φ∗Γ0

=
(
A∗µa , ψ∗A, ψ̄∗A

)
(3)

ηΓ1 = (ηa) , η∗Γ1
= (η∗a) . (4)

Since both the gauge generators and the reducibility functions for this model are field-independent,
it follows that the BRST differential s reduces to

s = δ + γ. (5)

The actions of the differentials δ and γ on the generators from the BRST complex are given by

δA∗µa = −∂ρF
ρµ
a , δψ∗A = −i∂µψ̄Aγµ, δψ̄∗A = −iγµ∂µψA (6)

δη∗µa = −∂µA∗µa , δΦΓ0 = 0, (7)
γAa

µ = ∂µηa γψA = γψ̄A = 0, γηΓ1 = 0 (8)
γΦ∗Γ0

= 0, γη∗Γ1
= 0. (9)

In this case the anticanonical action of the BRST symmetry, s=(,S), is realized via a solution to
the master equation (S,S)=0 that reads as

S = SL
0 +

∫
d4x (A∗µa ∂µηa) . (10)

3 Construction of consistent interactions

3.1 Cohomological reformulation

We will associate with (10) a deformed solution

S → S̄ = S + λS1 + λ2S2 + λ3S3 + · · ·
= S + λ

∫
d4x a + λ2

∫
d4x b + λ3

∫
d4x c + · · · , (11)

which is the BRST generator of the interacting theory,
(
S̄, S̄

)
= 0, such that the components of S̄ are

restricted to satisfy the tower of equations:

(S, S) = 0, (12)
2 (S1, S) = 0, (13)

2 (S2, S) + (S1, S1) = 0, (14)
(S3, S) + (S1, S2) = 0, (15)

...

If we denote by ∆ and Λ the nonintegrated densities of the antibrackets (S1, S1) and respectively
(S1, S2) then the local forms of the equations (13)–(15) become

sa = ∂µmµ, (16)
2sb + ∆ = ∂µnµ, (17)
sc + Λ = ∂µpµ, (18)

...

were mµ, nµ and pµ are some local current.
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4 Results

4.1 First-order deformation

The non-integrated density of the first-order deformation (the solution to (16)) can be naturally
decomposed as

a = aA + aint + aψ,ψ̄, (19)

each of the terms satisfying independently equations of the type (16).
The piece aA is known from literature [5] its concrete form is

aA =
1
2
fa

bc

(
η∗aη

bηc − 2A∗µa ηbAc
µ − Fµν

a Ab
µAc

ν

)
, (20)

where fa
bc are some real constants antisymmetric in its lower indices such that

fabc ≡ kamfm
bc , (21)

are completely antisymmetric.

Theorem 1 Under the assumptions made in the beginning of the paper supplemented with the reality
of the solution to the classical master equation for the deformed theory, the pieces aint and aψ,ψ̄ from
(19) [that produce non-trivial deformations] read as

aint = i
[
TaAB

(
ψ∗AψB − ψ̄Aψ̄∗B

)
+ T̂aAB

(
ψ∗Aγ5ψ

B − ψ̄Aγ5ψ̄
∗B

)]
ηa

+ψ̄ATaABγµψBAa
µ + ψ̄AT̂aABγµγ5ψ

BAa
µ(

faABψ̄AγµνψB + f̂aABψ̄Aγµνγ5ψ
B

)
F a

µν

+
(
fabABψ̄AγµνγαβψB + f̂abABψ̄Aγµνγαβγ5ψ

B
)

F a
µνF

b
αβ, (22)

aψ,ψ̄ = f0
(
ψ, ψ̄

)
+ f1

(
ψ, ψ̄, ∂ψ, ∂ψ̄

)
, (23)

where:
- TaAB and T̂aAB are the elements of some Hermitic matrices;
- faAB, f̂aAB, fabAB and f̂abAB are functions that depends only on the undifferentiated Dirac

spinors that satisfy the following algebraic properties

(faAB)? = −faBA,
(
f̂aAB

)?
= f̂aBA, (24)

(fabAB)? = fbaBA,
(
f̂abAB

)?
= −f̂baBA; (25)

- f0
(
ψ, ψ̄

)
is an arbitrary real function that depend only on the undifferentiated spinors and

f1
(
ψ, ψ̄, ∂ψ, ∂ψ̄

)
is a real function that depends on the massless Dirac fields and contains only one

space-time derivative.

Inserting (20), (22) and (23) in (19) we derive the most general and non-trivial solution to the
equation (16), solution that represents the non-integrated density of the first-order deformation.

On behalf of the basis
{1, γµ, γµν , γµγ5, γ5} , (26)

in the space of 4× 4 complex matrices, the real function f1
(
ψ, ψ̄, ∂ψ, ∂ψ̄

)
can be written as

f1 = (mµ)AB ψ̄A∂µψB + [(mµ)BA]?
(
∂µψ̄A

)
ψB + (mµ

α)AB ψ̄Aγα∂µψB

+ [(mµ
α)BA]?

(
∂µψ̄A

)
γαψB +

(
mµ

αβ

)
AB

ψ̄Aγαβ∂µψB

−
[(

mµ
αβ

)
BA

]? (
∂µψ̄A

)
γαβψB + (m̂µ

α)AB ψ̄Aγαγ5∂µψB

+ [(m̂µ
α)BA]?

(
∂µψ̄A

)
γαγ5ψ

B

+(m̂µ)AB ψ̄Aγ5∂µψB − [(m̂µ)BA]?
(
∂µψ̄A

)
γ5ψ

B, (27)
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where all the quantities (mµ
∆)AB and (m̂µ

∆)AB are arbitrary functions that depend only on the undif-
ferentiated Dirac fields.

4.2 Higher-order deformations

The next equation that we have to solve is (14) with its local expression (17).
The non-integrated density of the second-order deformation admits a similar decomposition as the

first-order one
b = bA + bint + bψ,ψ̄, (28)

each of the pieces satisfies independently equations of the form (17)

2sbA + ∆A = ∂µnA
µ , (29)

2sbψ,ψ̄ + ∆ψ,ψ̄ = ∂µnψ,ψ̄
µ , (30)

2sbint + ∆int = ∂µnint
µ . (31)

The resolution to (29) is already known [5].
Precisely, the existence of bA requires for the real constants fa

bc to satisfy

fm
[abf

d
c]m = 0. (32)

With the identity (32) at hand, the solution to (29) reads as

bA = −1
4
fmabf

m
cdAaµAbνAc

µAd
ν . (33)

By direct computation it can be shown that

∆ψ,ψ̄ = 0, (34)

such that we can take
bψ,ψ̄ = 0. (35)

The equation (31) can be solved by projecting it on various antighost numbers and on various
numbers of derivatives.

The resolution to the equation (31) can be summarized in the following theorem:

Theorem 2 i) The existence of the bint as solution for (31) requires for the functions [constants] that
parametrize the first-order deformation to satisfy the equations

[
Ta, T̂b

]
+

[
T̂a, Tb

]
= ifm

ab T̂m, [Ta, Tb] +
[
T̂a, T̂b

]
= ifm

abTm, (36)

TaAB

(
∂Rf0

∂ψA
ψB − ψ̄A ∂Lf0

∂ψ̄B

)

+T̂aAB

(
∂Rf0

∂ψA
γ5ψ

B + ψ̄Aγ5
∂Lf0

∂ψ̄B

)
= 0, (37)

[fa, Tb]AB +
{
f̂a, T̂b

}
AB

+ TbCD

(
∂RfaAB

∂ψC
ψD − ψ̄C ∂LfaAB

∂ψ̄D

)

+T̂bCD

(
∂RfaAB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂LfaAB

∂ψ̄D

)
− ifm

abfmAB = 0, (38)
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[
f̂a, Tb

]
AB

+
{
fa, T̂b

}
AB

+ TbCD

(
∂Rf̂aAB

∂ψC
ψD − ψ̄C ∂Lf̂aAB

∂ψ̄D

)

+T̂bCD

(
∂Rf̂aAB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂Lf̂aAB

∂ψ̄D

)
− ifm

ab f̂mAB = 0, (39)

[mµ, Tb]AB +
{
m̂µ, T̂b

}
AB

+ TbCD

(
∂R (mµ)AB

∂ψC
ψD − ψ̄C ∂L (mµ)AB

∂ψ̄D

)

+T̂bCD

(
∂R (mµ)AB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂L (mµ)AB

∂ψ̄D

)
= 0, (40)

[mµ
α, Tb]AB +

[
m̂µ

α, T̂b

]
AB

+ TbCD

(
∂R (mµ

α)AB

∂ψC
ψD − ψ̄C ∂L (mµ

α)AB

∂ψ̄D

)

+T̂bCD

(
∂R (mµ

α)AB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂L (mµ

α)AB

∂ψ̄D

)
= 0, (41)

[
mµ

αβ, Tb

]
AB

+
i
2
ε γδ
αβ

{
mµ

γδ, T̂b

}
AB

+TbCD




∂R
(
mµ

αβ

)
AB

∂ψC
ψD − ψ̄C

∂L
(
mµ

αβ

)
AB

∂ψ̄D




+T̂bCD




∂R
(
mµ

αβ

)
AB

∂ψC
γ5ψ

D + ψ̄Cγ5

∂L
(
mµ

αβ

)
AB

∂ψ̄D


 = 0, (42)

[m̂µ
α, Tb]AB +

[
mµ

α, T̂b

]
AB

+ TbCD

(
∂R (m̂µ

α)AB

∂ψC
ψD − ψ̄C ∂L (m̂µ

α)AB

∂ψ̄D

)

+T̂bCD

(
∂R (m̂µ

α)AB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂L (m̂µ

α)AB

∂ψ̄D

)
= 0, (43)

[m̂µ, Tb]AB +
{
mµ, T̂b

}
AB

+ TbCD

(
∂R (m̂µ)AB

∂ψC
ψD − ψ̄C ∂L (m̂µ)AB

∂ψ̄D

)

+T̂bCD

(
∂R (m̂µ)AB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂L (m̂µ)AB

∂ψ̄D

)
= 0, (44)

[fab, Tc]AB +
{
f̂ab, T̂c

}
AB

+ TcCD

(
∂RfabAB

∂ψC
ψD − ψ̄C ∂LfabAB

∂ψ̄D

)

+T̂cCD

(
∂RfabAB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂LfabAB

∂ψ̄D

)

−i (fm
bc famAB + fm

acfmbAB) = 0, (45)

[
f̂ab, Tc

]
AB

+
{
fab, T̂c

}
AB

+ TcCD

(
∂Rf̂abAB

∂ψC
ψD − ψ̄C ∂Lf̂abAB

∂ψ̄D

)

+T̂cCD

(
∂Rf̂abAB

∂ψC
γ5ψ

D + ψ̄Cγ5
∂Lf̂abAB

∂ψ̄D

)

−i
(
fm

bc f̂amAB + fm
ac f̂mbAB

)
= 0; (46)
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ii) The concrete expression of the non-integrated density of the second-order deformation in the inter-
acting sector reads as

bint = fa
bcA

b
µAc

ν

(
faABψ̄AγµνψB + f̂aABψ̄AγµνψB

)
− iψ̄AψBAa

µ [mµTa

+m̂µT̂a − Ta (mµ)† − T̂a (m̂µ)†
]
AB

− iψ̄AγαψBAa
µ

[
mµ

αTa + m̂µ
αT̂a

−Ta (mµ
α)† − T̂a (m̂µ

α)†
]
AB

− iψ̄AγαβψBAa
µ

[
mµ

αβTa + Ta

(
mµ

αβ

)†]

AB

−iψ̄Aγαβγ5ψ
BAa

µ

[
mµ

αβT̂a − T̂a

(
mµ

αβ

)†]

AB

−iψ̄Aγαγ5ψ
BAa

µ

[
m̂µ

αTa + mµ
αT̂a − Ta (m̂µ

α)† − T̂a (mµ
α)†

]
AB

−iψ̄Aγ5ψ
BAa

µ

[
m̂µTa + mµT̂a − Ta (m̂µ)† − T̂a (mµ)†

]
AB

+f b
mnF a

µνA
m
α An

β

(
fabABψ̄AγµνγαβψB + f̂abABψ̄Aγµνγαβγ5ψ

B
)

+fa
mnF b

αβAm
µ An

ν

(
fabABψ̄AγµνγαβψB + f̂abABψ̄Aγµνγαβγ5ψ

B
)

. (47)

The non-integrated density of the third-order deformation can be decomposed like the first- and
second-order ones

c = cA + cint + cψ,ψ̄. (48)

These terms satisfy equations similar to (18)

scA + ΛA = ∂µpA
µ , (49)

scψ,ψ̄ + Λψ,ψ̄ = ∂µpψ,ψ̄
µ , (50)

scint + Λint = ∂µpint
µ . (51)

It was shown [5] that the solution to (49) can be taken

cA = 0, (52)

because on the identity (32)
ΛA = 0. (53)

The equation (50) has also trivial solution on behalf of

Λψ,ψ̄ = 0. (54)

By direct computations, the solution of the equation (51) on the identities (45) and (46) reads as

cint = fa
mnf b

pqA
m
µ An

νAp
αAq

β

(
fabABψ̄AγµνγαβψB + f̂abABψ̄Aγµνγαβγ5ψ

B
)

. (55)

The consistency of the third-order deformation of the solution to the classical master equation, on
the identities (45) and (46) leads to the fact that fourth-order deformation can be taken zero

S4 = 0, (56)

so the deformation procedure stops at the third-order in the coupling constant.

5 The interacting theory

Putting the results obtained in the above together, we can write the solution of the classical master
equation for the interacting theory

S̄ = S +
∫

d4x
(
λa + λ2b + λ3c

)
, (57)
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where the terms displayed in (57) are explicitly given in (10), (19), (28) and (48) and in addition, the
functions (constants) that parametrize (57) satisfy the equations (32) and (63)–(46).

From (57) we can identify the Lagrangian formulation of the interacting theory as follows:
-the antighost number zero pieces from (57) give us the Lagrangian action of the interacting theory

S̄L
0

[
Aa

µ, ψA, ψ̄A

]
=

∫
d4x

{
−1

4
F̄ a

µνF̄
µν
a +

i
2
ψ̄Aγµ

(
kAB

−→
∂ µ − iλAa

µTaAB

−iλAa
µT̂aABγ5

)
ψB − i

2
ψ̄A

(
kAB

←−
∂ µ + iλAa

µTaAB − iλAa
µT̂aABγ5

)
γµψB

+λf0
(
ψ, ψ̄

)
+ λ

[
(mµ)AB ψ̄A∂µψB + [(mµ)BA]?

(
∂µψ̄A

)
ψB

+(mµ
α)AB ψ̄Aγα∂µψB + [(mµ

α)BA]?
(
∂µψ̄A

)
γαψB

+
(
mµ

αβ

)
AB

ψ̄Aγαβ∂µψB −
[(

mµ
αβ

)
BA

]? (
∂µψ̄A

)
γαβψB

+(m̂µ
α)AB ψ̄Aγαγ5∂µψB + [(m̂µ

α)BA]?
(
∂µψ̄A

)
γαγ5ψ

B

+(m̂µ)AB ψ̄Aγ5∂µψB − [(m̂µ)BA]?
(
∂µψ̄A

)
γ5ψ

B
]

−iλ2ψ̄AψBAa
µ

[
mµTa + m̂µT̂a − Ta (mµ)† − T̂a (m̂µ)†

]
AB

−iλ2ψ̄AγαψBAa
µ

[
mµ

αTa + m̂µ
αT̂a − Ta (mµ

α)† − T̂a (m̂µ
α)†

]
AB

−iλ2ψ̄AγαβψBAa
µ

[
mµ

αβTa + Ta

(
mµ

αβ

)†]

AB

−iλ2ψ̄Aγαβγ5ψ
BAa

µ

[
mµ

αβT̂a − T̂a

(
mµ

αβ

)†]

AB

−iλ2ψ̄Aγαγ5ψ
BAa

µ

[
m̂µ

αTa + mµ
αT̂a − Ta (m̂µ

α)† − T̂a (mµ
α)†

]
AB

−iλ2ψ̄Aγ5ψ
BAa

µ

[
m̂µTa + mµT̂a − Ta (m̂µ)† − T̂a (mµ)†

]
AB

+λ
(
faABψ̄AγµνψB + f̂aABψ̄Aγµνγ5ψ

B
)

F̄ a
µν

+λ
(
fabABψ̄AγµνγαβψB + f̂abABψ̄Aγµνγαβγ5ψ

B
)

F̄ a
µνF̄

b
αβ

}
, (58)

where we used the notation
F̄ a

µν = ∂[µAa
ν] + λfa

bcA
b
µAc

ν . (59)

-the antighost number one pieces from (57) offer us the generating set of gauge transformations
for the deformed model

δ̄εA
a
µ = ∂µεa + λfa

bcA
b
µεc, (60)

δ̄εψA = iλ
(
TaAB + γ5T̂aAB

)
ψBεa, (61)

δ̄εψ̄A = −iλψ̄B
(
TaBA − γ5T̂aBA

)
εa. (62)

6 Algebraic interpretation of the generators of deformed gauge trans-
formations

Let’s analyze the equations
[
Ta, T̂b

]
+

[
T̂a, Tb

]
= ifm

ab T̂m, [Ta, Tb] +
[
T̂a, T̂b

]
= ifm

abTm, (63)

satisfied by the generators Ta and T̂a of the deformed gauge transformations.
We define the Hermitic matrices

Ta = Ta + T̂a, Fa = Ta − T̂a. (64)
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Using the equations (63), the Hermitic matrices defined in the above satisfy

[Ta, Tb] = ifm
abTm, [Fa,Fb] = ifm

abFm. (65)

From (65) we can interpret (Ta)a and (Fa)a as the generators of two inequivalent unitary representa-
tions of the Lie group those Lie algebra has the structure constants fm

ab .

7 Conclusion

To conclude with, in this paper we have investigated the couplings between a collection of abelian
1-forms and a set of massless Dirac fields in D = 4 using the powerful setting based on local BRST
cohomology. The interacting theory is parametrized by ten sets of smooth functions of the undiffer-
entiated spinors and three systems of constants which satisfy twelve equations. The gauge algebra of
the deformed theory is a Lie algebra that closes off-shell and the interacting Lagrangian is of order
three in the coupling constant.
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