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Abstract

Consistent couplings between a set of vector fields and a system of massless Dirac spinors are
addressed in the framework of the antifield-BRST deformation procedure.

1 Introduction

In this paper we investigate the problem of the construction of all consistent couplings between a
collection of abelian 1-forms and a set of massless Dirac fields in D = 4. This problem is solved
using the deformation technique of the solution to the classical master equation [1] combined with
the local BRST cohomology [2]-[4]. The consistent cross-couplings are derived under the following
hypotheses: space-time locality, analyticity of the deformations in the coupling constant, (background)
Lorentz invariance, Poincaré invariance (i.e. we do not allow explicit dependence on the spacetime
coordinates), preservation of the number of derivatives on each field (such that the differential order of
the deformed field equations is preserved with respect to the free model) and the interacting Lagrangian
contains at most two space-time derivatives.

2 BRST symmetry of the free model

Our starting point is the free theory that involves a collection of abelian 1-forms and a system of
massless Dirac fields in D =4

. 1
sk [Anvaia] = [ate |- jrnE
i- i -
400,04 = 5 (0,04) 10 . M
2 2
In (1) we used two internal positively-defined metrics k,, and g4p that raise or low the latin indices
of the 1-forms and respectively of the Dirac spinors.

Also, we employed the notation Fyj, for the field-strength of the 1-form Aj (F, = O[HAz]).
The free theory possesses the generating set of gauge transformations

5 AL = O, S = Sedba = 0. (2)

The gauge parameters €* are bosonic, and the gauge algebra is Abelian.
The gauge transformations (2) are independent or, in other words, the generating set of gauge
transformations is irreducible.
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In order to construct the BRST symmetry for (1) we introduce the field, ghost, and antifield
spectra

o1 = (A% wa,iha), B, = (Ap 90 (3)
=0, ity = () - (4)

Since both the gauge generators and the reducibility functions for this model are field-independent,
it follows that the BRST differential s reduces to

s=0+7. (5)

The actions of the differentials  and v on the generators from the BRST complex are given by

SAM = =0, Fp,  s*" = —i0pty”, 0" = —intoap? (6)
St = =9 A%, 5T =0, (7)
VAL =0 ywa=Pa=0, =0 (8)
1er, =0, yir, =0 9)

In this case the anticanonical action of the BRST symmetry, s=(,S), is realized via a solution to
the master equation (S,S)=0 that reads as

§=sLy / d'e (A7) (10)

3 Construction of consistent interactions
3.1 Cohomological reformulation
We will associate with (10) a deformed solution
S — S=S+AS+ NS+ NG54
- S+/\/d4aza—|—)\2/d4mb—|—>\3/d4mc—|—---, (11)

which is the BRST generator of the interacting theory, (S, S) = 0, such that the components of S are
restricted to satisfy the tower of equations:

(S,8) = 0, (12)

2(51,5) = 0, (13)
2(52,9)+ (51,51) = 0, (14)
(83,5) 4+ (51,82) = 0, (15)

If we denote by A and A the nonintegrated densities of the antibrackets (51, S1) and respectively
(S1,52) then the local forms of the equations (13)—(15) become

sa = Oym", (16)
2sb+ A = 9Jn”, (17)

sc+ A = O, (18)

were m#, n* and p* are some local current.
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4 Results

4.1 First-order deformation

The non-integrated density of the first-order deformation (the solution to (16)) can be naturally
decomposed as . B
a=a®+a"™ +a¥?, (19)
each of the terms satisfying independently equations of the type (16).
The piece a® is known from literature [5] its concrete form is

1

A b b b

= i (e = 2459 A5, — FL A7, A7), (20)
where f{ are some real constants antisymmetric in its lower indices such that

fabc = kamfggv (21)

are completely antisymmetric.

Theorem 1 Under the assumptions made in the beginning of the paper supplemented with the reality
of the solution to the classical master equation for the deformed theory, the pieces a™ and a¥¥ from
(19) [that produce non-trivial deformations] read as

a™ = i [TaAB (WAWB - @AWB) +Tuan (WA’YWB - &AM*B)] n*
+p A Toapy VP AL + AT, apy 5P AL
(faABQEA'V'WT/JB + faABﬂ;A’YW’YEﬂ/)B) Fy
+ (fabAB&A7“V7a6¢B + fabAB¢A7“V7a575¢B) o Fls, (22)

a’? = fy (Tba"‘/;) + fi (wvr‘% 0y, 81/;) ’ %)

where:

wAB and TaAB are the elements of some Hermitic matrices;

faAB, faAB, favap and fabAB are functions that depends only on the undifferentiated Dirac
spinors that satisfy the following algebraic properties

(faAB)* = _faBAa (faAB)* = faBAa (24)

(fabaB)" = fraBA, (fabAB>* = — fraBa; (25)

- fo (w,zﬂ) _is an arbitrary real function that depend only on the undifferentiated spinors and
J1(¥,9,00,00) is a real function that depends on the massless Dirac fields and contains only one
space-time derivative.

Inserting (20), (22) and (23) in (19) we derive the most general and non-trivial solution to the
equation (16), solution that represents the non-integrated density of the first-order deformation.
On behalf of the basis

{17 ’Y;M ’YMV7 ’Y/L’YEH 75}5 (26)
in the space of 4 x 4 complex matrices, the real function fi (¢, P, O, 81;) can be written as

fio= (") ap 00" + () pal* (9u07) 0P + (mh) ap 09" 00)"
(i) gl (9uB™) 70 4 (mliy) | BM9°00,0°
— () ] (8u0?) 7257 + () 4 0455006
+ [00t) )" (99%) 12 350"
+ (1) 4 050,007 — [00) ] (08) 7507, (27)
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where all the quantities (m/y) 5 and (/s ) , 5 are arbitrary functions that depend only on the undif-
ferentiated Dirac fields.

4.2 Higher-order deformations

The next equation that we have to solve is (14) with its local expression (17).
The non-integrated density of the second-order deformation admits a similar decomposition as the

first-order one . B
b= b+ b 4 ¥V, (28)

each of the pieces satisfies independently equations of the form (17)

2sb™ + AR 8“71!/}, (29)
2569 AV = grp, (30)
25b™ 4 AN 8“712”. (31)

The resolution to (29) is already known [5].
Precisely, the existence of b* requires for the real constants [ to satisfy

f[ab cm = (32)

With the identity (32) at hand, the solution to (29) reads as
1 m pap gbv pc pd
= I AT A A AL (33
By direct computation it can be shown that
AV =, (34)

such that we can take B
bY = 0. (35)

The equation (31) can be solved by projecting it on various antighost numbers and on various
numbers of derivatives.
The resolution to the equation (31) can be summarized in the following theorem:

Theorem 2 i) The existence of the b™ as solution for (31) requires for the functions [constants] that
parametrize the first-order deformation to satisfy the equations

(Lo, Th] + |10, To| = ifi T, [Ta, To) + |, Ty] = if5 T, (36)

Tois <3Rfow wAa fo)

0P oYp
) R oL
+T0aB (gJ Y18 + s ¢f0> =0, (37)

[fayTb}AB + {faaTb}AB

oY oY

. R
+Tvep (885523 sypP + Py 5@{;;13) —ifap fman =0, (38)

+TbCD (aRfaABd]D wca faAB)
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8RfaAB

, [ 00" farp
D 5C a
[fa,Tb}AB + {fa,Tb}AB +TbCD ( awc w w 81[}D
[ O fars _p . . O faan . pm 7
T _— + — LB —ifmfag =0,
+b(JD< Bic Vs s 90 f7 fmaB

R R (0 n o
[mH, Ty) 45 + {m“,Tb}AB +TveD (M)AB¢D _ wC(m)AB>

8w0 81/JD
R B L
+Then (W%W + wc%w> o,

~ R 4 B L o
m T ot i B+ Toep [ L M8)ap o e (Ma)ap
e AB a AB

OYc Op
7 Ot (mi - o mh
+Tyep (%)’MS%I/JD + 10075((91/_)13)%‘3) =0,

{mgngb} s %saﬁw {m’;é,Tb}AB
R H L 14
+Tyep (W@b[’ — &C%)

+Thcp ( Tic ABsp? + s — o

- R (s B L (5 u0
m“va + m‘u,Tb + Tvep %wD_TZJC%
[} AB «@ AB

31/20 a&D
~ OR (m# _ oL mg
+Tyep (W’stl) + ?,Z)C’Ys(ad_)D)AB> =0,

R (4 L /A
[mHaTb]AB + {mu’Tb}AB + Tyep (MM)AB¢D _ &C%)

Yo op
A M) ap b, 7o (") 4
Tyop | S AB 4 D 4 Oy C VTV JAB )
+Tycp ( die Vs~ + Y5 90
s Mfwas .o 700" favaB
[fabaTc]AB+{fabaTc}AB+TcCD ( 81/10 ¢ —¢ ad—}D
A Mfwas . p o Ofwan
+1, 4 fCrg o 2AB
CcD ( D Vs + P75 90
—i(fie fama + for fmbaB) =0,
. - M fuvar O faban
[fabaTc}AB + {fab;Tc}AB +T.cp (%w - W
X Mfwas  p . o fwan
T, + S
+Tecp < D Vs~ + Y5 90

—i (fZZfamAB + f;lfmbAB) =0;
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i1) The concrete expression of the non-integrated density of the second-order deformation in the inter-
acting sector reads as

b = i ALAS (fannt 98 + faant iy yP) — Ay P AL [mT,

i Ty — Ty ()| =T ()] — AP A% [mb T, + b,

~ . - T
=T () — T )], = 69 P0P A [l T, + T ()

- - - T
: T A B
Ay ysP AT [mZﬁTa — T (mhis) ;.
iy s P A [l T+ mi T, — To () = T (mf)]

iy P AL [T, + mi Ty - T, ()t = T, )]

+f i AR AG (fabABQZA’YW’YO‘ﬁ?ﬁB + fabAB?;A’YW’YO‘ﬁ’stB)
+ o Fog AT AL (fabABTZJA’YMV’YaﬁwB + fabABil;A’YW’Yaﬁ%l/JB) : (47)
The non-integrated density of the third-order deformation can be decomposed like the first- and

second-order ones . )
c=cM 4t P (48)

These terms satisfy equations similar to (18)

s + AN = 8“pﬁ, (49)
ScPP 4 AV = g (50)
st AN — a“pi?t. (51)

It was shown [5] that the solution to (49) can be taken
M =0, (52)

because on the identity (32)
AN = 0. (53)

The equation (50) has also trivial solution on behalf of
AV =, (54)
By direct computations, the solution of the equation (51) on the identities (45) and (46) reads as
M = o Fh AT AL AL AY (fapant ™"y 0 + fapant "y Pys ). (55)

The consistency of the third-order deformation of the solution to the classical master equation, on
the identities (45) and (46) leads to the fact that fourth-order deformation can be taken zero

Sy =0, (56)

so the deformation procedure stops at the third-order in the coupling constant.

5 The interacting theory

Putting the results obtained in the above together, we can write the solution of the classical master
equation for the interacting theory

S =5+ /d4x ()\a + A%+ /\30) : (57)
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where the terms displayed in (57) are explicitly given in (10), (19), (28) and (48) and in addition, the
functions (constants) that parametrize (57) satisfy the equations (32) and (63)—(46).

From (57) we can identify the Lagrangian formulation of the interacting theory as follows:

-the antighost number zero pieces from (57) give us the Lagrangian action of the interacting theory

Sk Az vaia) = [ato {=JFLR S0y (ban Ty~ AALTaan
—iAALTLapYs ) P — 5%‘ (kap @y +NALT AR — INALTuaps ) 0"
Mo (0, 8) + A [(m#) 4 400" + [(m#) )" (9,8%) P

(ml2) 4 09 00 + [(ml) o] (080) 77
T (mgﬁ)AB Q’Z_)Ayaﬁa“wB N [(mgﬂ)BA]* (a“d_}A) 7%67’[}3

(1) ap 67" 50u0" + [(0183) pal” (B9 72 750"
+ (1) 4 $4950,07 = () p )" (900*) 150" |
—INPAOPAG [m T, + i Ty = T, () = T, ()]

T T

a (M)
t

—IN Ay P A [mAT, + T, - T (il)']

_i)\QQLA’YaﬁwBAa[ T + T, ( aﬁ)

AB

2TA a a t
—iXZpAy ﬂ’y51/JBA { BT -7, ( aﬁ) .
—INO A 5P A [T, + mi Ty — T, (k)| = To (ml)T]
_iAQ@A’YBi/)BAZ [m“Ta +mhT, — T, (mu)T o (mu)T}
+A (fa,AB@ZA’YleB + faAB&A'YMV'YtSwB) Fg,
+A (fabABQ;A’YMV’YaﬁwB + fabAB@A’YWW’aﬂ’VWB) _ﬁuFabﬁ} ; (58)

where we used the notation B
F, = 0, A% + ML ALAS. (59)

-the antighost number one pieces from (57) offer us the generating set of gauge transformations
for the deformed model

A% = Dy + M AbeC, (60)
detha = iX ( aAB + ’YsTaAB) PpPe (61)
Sctha = —iMpP ( aBA — ’Y5TaBA> : (62)

6 Algebraic interpretation of the generators of deformed gauge trans-
formations

Let’s analyze the equations
[TaaTb} + [TaaTb} =1 ZZI;LTm» [TaaTb] + [Taaj—‘b} =1 (ZZTma (63)

satisfied by the generators T, and T, of the deformed gauge transformations.
We define the Hermitic matrices

T, =T, + Th, Fu=Ty—T,. (64)



Using the equations (63), the Hermitic matrices defined in the above satisfy
[%a%] = ingTm, [faafb] = if;g]:m- (65)

From (65) we can interpret (7,), and (F,), as the generators of two inequivalent unitary representa-
tions of the Lie group those Lie algebra has the structure constants f77}.

7 Conclusion

To conclude with, in this paper we have investigated the couplings between a collection of abelian
1-forms and a set of massless Dirac fields in D = 4 using the powerful setting based on local BRST
cohomology. The interacting theory is parametrized by ten sets of smooth functions of the undiffer-
entiated spinors and three systems of constants which satisfy twelve equations. The gauge algebra of
the deformed theory is a Lie algebra that closes off-shell and the interacting Lagrangian is of order
three in the coupling constant.
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