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Abstract

A consistent sp(3) BRST description of the 1-reducible gauge theories in a Lagrangian form is
possible using for variables and operators a bi-graduation (gh, lev). It has to be done in an extended
space generated by the fields (real and ghost type) and antifields. The complete spectrum of these
generators will be done in the paper.

1 Introduction

Many models of interesting field theories have gauge invariance properties which are expressed by
using some linear dependent generators. Such examples of gauge reducible theories are offered by the
two forms models [1], [2] by the models from gravitation and supergravitation in spaces with d # 4
[3], or by superstrings [4], [5].

An important technique in studying these models is represented by the BRST approach [6], [7]. It
allows to include all the gauge invariances of the model in a more general and global symmetry, s, called
the BRST symmetry. Moreover, it is well known that a more general symmetry has been defined, the
BRST-antiBRST symmetry [8], [9] and extended formalism has beed developed. This sp(2) symmetry
solved a lot of practical and principial problems in constructing and in understanding the BRST
technique: a consistent approach to anomalies, the correct understanding of the non-minimal sector
in the BRST setting. Despite that, other problems are still remaining and a more general approach
has been necessary. This is why general sp(n > 3) BRST theories has been formulated [10].

A complete and consistent Hamiltonian description has been done using new graduation rules,
based on spliting the generators on many levels, both for irreducible and reducible theories. A sp(3)
Lagrangian description following this approach has been presented for irreducible case only [11]. To
end "the circle” the development of the formalism for reducible theories is needed. After this, the
equivalence between the sp(3) BRST Hamiltonian and Lagrangian approaches needs to be done. The
present paper will do a first step from the sp(3) BRST Lagrangian formalism by presenting how the
extended space (with ghost-fields and antifields) for 1-reducible theories can be constructed.

The paper has the following structure: after this introductive part, in the section 2, general ideas
on the sp(3) BRST Lagrangian theory will be recalled. In the section 3, the construction of the
exterior longitudinal tricomplex (generated by fields: real and ghost-type) will be done. The Koszul-
Tate tricomplex (generated by antifields) will be built in the section 4. Some concluding remarks will
end the paper.

2 General ideas on the sp(3) BRST Lagrangian theory

Let us consider a theory described by the Lagrangian action Sp[g] which are invariant at the gauge
transformations: ‘ ‘
(Squ:Rfyo(q)gaOa t=1,---,n;ag=1,---,mg (1)

where real variables ¢ = {q¢!,--- ,¢"} have the Grassmann parities £(¢’) = &;. The gauge parameters
€20 have the Grassmann parities €(¢*°) = €4, and the generators of the gauge transformations Ry, =
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R!, (q) have e(R., ) = &; + €q, (mod2). The gauge algebra is given by

R pi R pi R
0 Rzm Rj _ (_)6%550 J Rﬁo RI =R 0 _ 0750 Jt (2)
5qj Bo 5qj g Y0~ Bo 5qj oo
where the structure functions CZ% g, and M iz 5, can depend by the real fields and satisfy the symmetry
properties:
Condo = ~ ()70 0CE 0 Magp, = —(S)7 050 M o = — ()50 Mg g, (3)

For simplicity reasons, we will consider the case when the gauge generators satisfy a Lie type algebra

(M5, = 0):
The invariance of the action at the previous gauge transformation leads to the Noether identities:
RSy
7Ry = 0. (4)

In the previous relations, the upper index R signifies the right derivative.
We will suppose that the gauge transformations (1) are reducibile, that is not all gauge generators

R!,, are independent. Nontrivial functions Z3° = Z3°(q) exist so that:
. 58,
Rgozgg:Myléf,alzl,---,ml (5)
q
£(Z30) = €ay + €ay (mo0d?2), (M) =eq,. (6)

Again for simplicity we will restrict to a 1-reducible theory, where all Z5° functions are independent,
and we will consider the real fields as being bosonic ones, ; = 0. The extentions to more sophisticated
cases are quite direct.

The sp(3) BRST algebra is defined by:

SaSp + 8psq =0, a,b=1,2,3 (7)
where s1, so and s3 represent different items of the total BRST operator s:
§ = 81+ 89 + S83. (8)

Moreover, their cohomological groups of order zero (gh = 0,lev = 0) have to give the set of all
observables of the theory:
Ho,0)(5a) = {observables}, a =1,2,3. (9)

Each differential s,,a = 1,2,3 can be decomposed as in the standard case [13]:
Sa=0a+de+---, a=1,2,3 (10)

where {04,a = 1,2,3} represent the Koszul-Tate differentials with non-trivial action on the antifields
and {dg,a = 1,2,3} are the exterior longitudinale derivatives acting in the ghosts sector. On the basis
of (7) and (8) we obtain that s2 = 0.

As we mentioned, we will develope a ”many-levels” approach using a graduation (gh, lev) [12]. The
ghost number (gh) has the same significance as in the standard BRST theory [13] and the extended
space will be generated by a set of ghost-fields and by another set of antifields. In our approach, all
these generators will be placed on many levels. Depending on this, each generator will be characterised
by a level number (lev), degree which will allow to differentiate among the generators with the same
ghost number. We will extend for the previous operators the graduation (gh,lev). It will allow to
make a distinction between s1, so and s3 and to well-define their action on different generators of the
extended space.
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In conclusion, the extended space of the fields (real and ghost-type) and of the antifields will be
structured on many levels LW | € Z, the variables and the operators being double graduated by
(gh,lev). As in the standard case [13] we will have gh = pgh > 0 for ghosts and gh = —antigh < 0
for antifields. The level number is an integer, positive for ghosts (lev > 0), negative for antifields
(lev < 0) and zero for the original fields or any function of these (lev = 0).

The same graduation will be used for operators, too:

gh(dq) = —antigh(dy) = 1,lev(dy) =a—1, a =1,2,3 (11)

gh(dy) = pgh(dy) = 1,lev(dy) =a—1, a=1,2,3. (12)
For the BRST operators we will define:

gh(sq) = 1,lev(sq) =a—1, a=1,2,3. (13)

The main problem we intend to solve consists in the construction of a special differential complex
(tricomplex), (K, s1, s2, 3), graduated in terms of (gh,lev). The decomposition (10) is made following
the ideas: (i) the three diferentials d,,a = 1,2,3 have to define a differential tricomplex of the form
(K',61,09,03), graduated in terms of (antigh,lev) with antigh > 0 and lev < 0, s.t. to achieve a
triresolution of C*°(X) (X is the stationary surface of field equations); (ii) the three exterior derivatives
along the gauge orbits, d,,a = 1,2, 3, have to define a exterior longitudinal tricomplex (K", dy,ds, d3)
graduated in terms of (pgh,lev) and, moreover, the attached cohomologies to each d, have to be
isomorphic with the cohomology of the exterior longitudinal derivative from the standard BRST
theory [13].

3 The construction of the exterior longitudinal tricomplex

Let us start with the construction of the exterior longitudinal complex (K", dy, da, d3) graduated in
terms of (pgh,lev). We will show that in the algebra K" of the polynomials in ghosts with coeficients
which are smooth functions on Y, the total differential d splits as

d=dy+ds+d3 (14)

where each item satisfies (12).
In this respect we will start from the idea that in the sp(3) BRST description, the gauge transfor-
mations are triplicated and the relation (1) can be extended in the form:

sq' = Ry (ghosts) ™! + Ry o (ghosts)**® + Ry, (ghosts)**® + - (15)
where , , ) .
Z;vol = R(ZJt()Q = Ri¥03 = Rq(llo (16)

We can introduce the condensed notation

71;40 = (RZ Rééo’

«Q’

R..). (17)

By that, s can be seen as the generator of a second order reducible theory. The reducibility relations
are:

7 A
Ry Zp° =0, Z0Z50 =0. (18)
We attach to the gauge generators (17) the ghosts
QY = (Q', Q™% Q) (19)
with the properties
e(QY) = ey + 1, pgh(Q*°) = 1,lev(Q°) = a — 1. (20)
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We also attach to the reducibility functions
a0 _ s
gio= | o ¢
Bo — aﬁoo - Bo
05, 05 0

and
~d
By — B
Zvoo = _578
—ob

the ghost type variables
)\Ao = ()\aol’ )\a02’)\a03)

g(AYY) = g44, Pgh(AY?) = 2/ lev(AY) =4 —a

and, respectively,

Ao — ,,x0

n n
e(n™) = €qy + 1,pgh(n™°) = 3, lev(n®®) = 3.

On the other hand, the gauge generators R’AO satisfy the reducibility relations

. .58
A 0

Another association will be done by considering for

lzgi) lng lzgi)

Ao — i oy Lryag L r7og
ZA1 = %Za1 Z50 Zg!
Loy Lrzag L1Lr7og

3Z0t1 3Za1 32011

the ghosts of ghosts
QA1 = (Qa1a|1 Qa1a|2 Qala\S a=1,2,3)
with
Q) = ca,, pgh(Q1?) = 2,1e0(Q™1 M) =a +b—2, a,b=1,2,3,

The matrix Mile have the form:
M
MY = | M,
Mg,
Not all the reducibility functions Z ﬁf are independent:
Ay A
Z Bll Z A;’ =0
where
a1 a1
A, Oal 551 7(2511
ZBl = _igl Oal 6[31
6ﬁ1 _551 0

Corresponding to these new reducibility functions, ghosts of ghosts of ghosts are introduced

)\Al = ()\ala|17)\a1a|27)\a1a|37a — 1’273)

with
6()\0‘1“|b) =€q, + 1,pgh()\o‘1a|b) =3, lev()\o‘la‘b) =a—b+3,a,b=1,2,3.
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At their turn, the reducibility functions Z 1/3111 are not independent, new reducibility relations occuring

Z0zy) =o. (36)
We attach to the reducibility functions
y
S
Zp = —(551 (37)
_5’71
B
new ghost-type variables
77A1 = (na1|17na1|27na1|3) (38)
with
£(n™1%) = 0y pgh(n™1%) = 4,1ev(n®"*) = a+2,a = 1,2,3. (39)

The algebra K” = C*(I) ® C[Q*] (I represents the space of all possible configurations of real fields)
will be generated by the set of fields (real and ghost type)

Q1 = (g, Qe a0t e, Quelt el pl ap = 1,2,3). (40)
It is easy to verify that in K” the differential d is splited as in (14). It is clear that:
d> ~ 0= dydy+ dpdg ~ 0, a,b=1,2,3. (41)

In a condensed form, the action of the operators d,, a = 1,2, 3 on the generators of K" can be written:

4 . 1 B B
daq' = R Q"0 + o Ma) (45, Q™ Y5 + G A P8 + 0 10ca),

1aQP = 20f N 4 ()0 B QUIQRG, + 28 QM (12)
dg A0 = —5bn o 4 % (=)70 g0 APQ6 o+
() e 0 hea QI b — L ZEAT N, (43)
dan™ = 3 ()70 0, Qs L 2500,
s () oy — ()0 o), o YQmeQruerBcs,, (44)
daQ 1t = g gr1dle g able = _gbpeale g porle — g, (45)

4 The construction of the Koszul-Tate tricomplex

In this section we intend to build the Koszul-Tate tricomplex so that this to realize a triresolution
of C*°(X). We note with K’ the algebra of polynomial in fields and some objects (the antifields,
which will be introduce later on) with coeficients which are functions on I. So, all closed non-exactely
co-cycles from {d,,a = 1,2,3} homology have to be destroit. Firstly, we will introduce, like in the
standard case [13], the antifields ¢}, with (¢},) = 1, antigh(q},) = 1, lev(g},) = 1 — a so that

(46)

The existence of some non-trivial co-cycles in §,—homology, a = 1,2, 3 asks for the introduction
of new antifields, g;,, with (g;,) = 0, antigh(g,,) = 2 and lev(g,;,) = a — 4 so that to assure

H(l,l—b) (5(1) =0,a,0=1,23 (47)
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5a(Eabcqz<b) =0, 6aG;c = EabCQ;‘kb' (48)
From (46) and (4) we observe that

R .
678

Sa(San Ry ) = "o e = 0 (49)

with e(Q% ,.) = €qay, antigh(QF ,.) = 2 and lev(QF , ) =

and we will introduce the antifields @) obe aobe aobe

2 — b — ¢ so that

*
agbe

5aQZzobc = 5abe)zoq;<c' (50)

The apparition of some non-trivial co-cycles at (antigh = 2,lev = c—4, ¢ =1,2,3)

ba(0actic) =0, (51)
8a(Qhgae — Qapca + RogTic) =0 (52)
and of the non-trivial co-cycles
da(EabaQagbe) =0 (53)
1 1 .
8 (QZ;? (Qaoes + Qaope) + 5 M) qz‘bq;‘c) =0 (54)

at (antigh = 2,lev =2 —b—¢, b,c = 1,2,3) imply the introduction of the new antifields, g;, with
e(q;) = 1, antigh(g;) = 3 and lev(g;) = —3 s.t.

5(161’ = 5ac§ic (55)

and respectively antifields \* with (A}

apac? apac
that

) = €ag, antigh(X\, ,.) = 3 and lev(\:, ,.) =c—a—3so

apac apac

561)‘240120 = 5ab(5cdeonde - Régéic)' (56)
For assuring H(so_p_¢)(6a) = 0, a,b,¢ =1,2,3 we introduce the antifields Q. With £(Qugap) = €ao>
antigh(Qqpe) = 3 and lev(Qqyqp) = a — b — 3 so that

60«@0{0(10 = Eabszobc (57)

and antifields @}, beld with E(Qzl bc‘d) =€q +1, antz’gh(QZ1 bc‘d) =3 and lev(Q;‘;1 bc|d) =3-b—c—d
so that ) .
00 Qi = 0 ( 5285 @+ Qi) + 5 M) (58)

New closed non-exactely co-cycles appear
5a(5ab©aobc) =0 (59)

5a(€abeQzl bc|d) =0 (60)

and new antifields, Q,,q, With €(Quy0) = €ap + 1, antigh(Qu,q) = 4 and lev(Q,,,) = —a — 2 are
necessary so that

6(1@0400 = 5ab@a0bc (61)
The antifields Q,,, bejd With
8(@a1 bc|d) = Eay> antigh(@oq bc\d) = 47 lev(@al bc|d) =b—c—d—-2 (62)
are introduce so that B
5aQa1 beld = Eaeszl ecld’ (63)
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The presence of some non-trivial co-cycles at (antigh = 3,lev =a —b—3, a,b =1,2,3) asks the
introduction of the antifields Aoyap With e(Aagab) = €ag +1, antigh(Aagap) = 4 and lev(Aagap) = a+b—8
so that

daNaged = 5abc>‘;0bd- (64)

At (antigh = 3,lev = —3) appear non-trivial co-cycles of the form

3
o (Z ( agee anCC) + R 0q’> =0,0=1,23 (65)

c=1

and the é,—closed modulo é,—exactely polynomial

—_

3
Hay = Z 3 (280 (Nsosp — Quopp) + M7 aiyan) (66)
b=1

dafta; = 0.

For their elimination from §, homology we introduce the antifields 7}, ,, with e(n} ,) = €a + 1,
antigh(n},.) = 4 and lev(n};, ,) = —a — 2 so that

3
Sutlay = Gu (Z (Voo ~ D) + qu> o
c=1
and antifields )\Z bele with

8( Z{l bc|c) - €a1,antzgh(/\a1 bc|c) =4 lev(Aal bc|c) =-b-1 (68)

so that 1
da )\al bc|c §5abﬂa1- (69)

The following polynomials
Hay12 = _§Za1 (Moo12 = 2Qag21) + @3, i1~ @ag s M 451452 (70)
1

Haq 113 = —523f ( apl3 — QQa031) + Q5 12 — Qa121|1 + M 1%1‘113 (71)
Haq 213 = _5251 ( ?;023 - 2@%32) + QZ} 1212 Qzl 22|1 + M %2%3 (72)

are d4-closed modulo d,-exactely and, for their elimination from 4, homology we introduce the antifields

)\Zlam, )‘Z1all3 and )\a 23 with properties
£( 21 a1|2) =e(Ag, a1\3) =& Zl a2|3) = €ay> (73)
antzgh()\alam) antigh(\}, a1\3) antigh(A},, a2\3) 4, (74)
lev(AL, g1)2) = lev(AG, 413) = lev(AG, 4o3) = —a — 1 (75)
so that
5a/\:;1 bi2 = 6ab,uoz1 125 5a)\:;1 b13 = 5ab#a1 13> 6a)\21 b23 = 5abﬂa1 2|3 (76)
Similarly, we introduce the antifields )\a a2l )\ala3|1 and )\Zla3|2 with
£(Aa, a2|1) = 5()‘21@3\1) =e(Ay, a3|2) = Eay; (77)
antigh(Ay, go1) = antigh(X,, 431) = antigh(AZ, 43p) = 4, (78)
lev(Aal a2|1) lev()‘og a3\1) lev(/\al a3|2) —a—1 (79)
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so that the non-trivial polynomials from &, homology:

Hay 21 = QZal ( @p21 2Qa012) + Q3122|3 - Q2132|2 + M %2%1 (80)
Hay 31 = —522? (o3t — 2Qug13) + Ql, 2313 — Qo332 T M 9 aa5 (81)
Hay3)2 = 522? (Mog32 = 2Qag23) + Qny 331 — @iy 133 + M o Gals (82)

to be eliminated

511)‘211 b2l — 5ablu'a1 2|1» 5(1/\21 b3]1 — 5ab,UJa1 3|1, 5aAZI b3]2 = 5ab,ua1 3|12- (83)

The relations (69), (76) and (83) can be write in the condensed form

0aAny beld = Oablay cld> € 7 d (84)
Sarn, bele %(ilbual,c =d (85)

where ) B .
Honcld = ~5Zay (Mrocd = 2Qagde) + €cde( Qi ceje = Qi cele) + 2M21qchjd (86)

The §,-closed co-cycles which not are dq-exactely from Hypy.g)(da), a,b,c =1,2,3 will be elim-
inated from 84 homology by introduction of the antifields Ao With €(Aaga) = €ags antigh(Aaga) = 5
and lev(Aage) = a — 7 so that

5axaoc == 5abxa0bc- (87)

We observe that
5(1 (Eabcngob) =0 (88)
5a(@a1 ac|d) =0 (89)

and we introduce the antifields 7, With €(,,4) = €ag, antigh(M,.,) = 5 and lev(7,,,) = @ — 7 s0
that

—_ *k
5a77a0b = €acbTage

and the antifields Q,, cla With

E(Qal c|d) = Eay + 17 antigh(@al c\d) = 57 lev(@al c|d> =—c—d-1

so that
50LQ0¢1 cld = 5aan1 beld-

The existence of non-trivial co-cycles 5abc)‘zl bdle imply H(4p—c—a-2)(0a) # 0, a,b,c,d = 1,2,3 and
for assuring Hyp—c—q-2)(a) = 0 we introduce the antifields Ay, cgje With €(Aa, cgle) = €ay + 1,
antigh(xalcdk) =5 and lev(Ag, cdle) = ¢ —d+e—Tso that

N *
50)\(11 cdle = 2":Lzln:)\o[1 bd|e

For assuring H(s .—qye—7)(6a) = 0,a,¢,d,e = 1,2,3 we introduce the antifields Aoy dle With 5(Xa1d|e) =
sal,antigh(xald‘e) =6 and lev(A,, dle) = € —d — 6 so that

5a/\a1 dle — 60,0)‘011 cdle-

Non-trivial co-cycles from 4§, homology of the form du7,,, Will be destroit by introduction of the
antifields 7, with (7,,) = €4y + 1, antigh(7,,) = 6 and lev(7,,) = —6 so that

5aﬁo¢0 - 5abﬁo¢0b' (90)
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We remark the existence of polynoamials

1 * * 1 i 1 = = * —
Vaile = 5Z$?naoc — Aayedld T §M&]1 <2€cdqu'dqje - Qicqj> (91)

in d, homology
5(11/041 |C =0

and for their destroire we introduce the antifields 77;10‘C with e(n* | ) = ¢eq, + 1, antigh(n® ) =05

a1 cle aicle
and lev(n* )= —2c—1 so that
a1 cle

5(177;1 cle = 5&07/041 e (92)

From the last relation we observe the existence of some non-trivial co-cycles in Hs _9.—1)(da), a,¢ =
1,2,3 and for their killing we introduce the antifields 7, . With (7, pjc) = €ay, antigh(iy, pc) = 6
and lev (7, pjc) = b — ¢ — 6 so that

SaTley ble = Eabellny cfer @ + b+ ¢ =6. (93)

The elimination of non-trivial co-cycles from Hgj_._6)(da), a@,b,c =1,2,3 is done with help of new
antifields 7, | With £(Ty,|c) = €a, + 1, antigh(n,, ) = 7 and lev(7,, ;) = —c¢ — 5 so that

0aTlay |e = OabTlay ble- (94)
It is easy to verify that other non-trivial co-cycles not appear in d, homology:
H;n(0a) =0, j>1,1<0, a=1,2,3. (95)
With the other words, H g )(d,) contain whole d, homology:
H0,0)(01) = H(0,0)(62) = H(0,0)(03) = C>(X) = Ho(9). (96)

In conclusion, we succeded to introduce the complete spectrum of antifields

Qha =G onalw )‘Zoab’ 77:;0‘1’ QZH able’ )\:;1 ables 77;1 a|b}’ (97)
@Aa = {qia? @aoab’ Xaoal” Nagas @al abler Xal ables Moy a‘b}’ (98)
@A = {q“ @aoa’ Xaoa/’ ﬁOlO 5 @al a|b7 qu a\b? ﬁal |a} (99)

so that the tricomplex (K’,d1,02,d3) graduated in terms (antigh,lev) to realized a triresolution of

c=(x).

5 Conclusions

A consistent sp(3) BRST description of the 1-reducible gauge theories in a Lagrangian form is possible
using for variables and operators a bi-graduation (gh,lev). It has to be done in an extended space
generated by:

* fields (real and ghost-type):

Q4 = {¢', Q 0, A0 0, Qerelb yenalb peale g p =1 2 3}, (100)
* antifields:
Qlha = {dia> Qagabs Magabs Mapar @ay ables May abler T alp ) (101)
Qaa = {Tia> Qugabs Mavabs Tagar Qay abjes Moy ables Tas afb (102)
Q4 = {7 Quoas Mavas Tags Qay alpr Ay albs Tay Ja ) (103)
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It is easy to note that there is not a one-to-one correspondence between ghosts (100) and antifields
(101), (102) and (103). There are much more antifields generated by the acyclicity requirement for
{8a,a =1,2,3}. To define ”canonical” pairs would impose more ghosts, but, as our approach allowed
to see, this enlargement is not necessary. We can keep the ghost spectrum at a minimum size and to
see d, as a sum between a ”canonical” and a "noncanonical” part

Og = 057" % 077" %, a=1,2,3 (104)
where 5 "
1) A — 0
o = (e oo w45, 4, (105
PEAQ 4 TEREQ

and the canonical part is defined in respect to the antibrackets (,)q, a =1,2,3

O = (%, 5)al (106)

ghosts=0 -

In the previous relations, S represents the generator of the sp(3) BRST Lagrangian symmetry in
the anticanonical structures of the antibrackets. The noncanonical part will act nontrivially on the
non-paired antifields:

5(7lwncan@Aa 7& 0, (5;10?100”@14 7& 0. (107)

In conclusion, the sp(3) BRST Lagrangian differentials will be decomposed as
e = (%,8)q + 0" %, a =1,2,3 (108)

The master equations will be of the form
1
5(5’, S)a + 0,01 S = 0. (109)

For reducible theories, the acyclicity of J, is not achieved by killing some ghost variables with
new generators. Some non-trivial co-cycles are given now by some special polynomials of the ”star”
and "bar” antifields. We presented in this paper the concrete form of all these polynomials for the
1-reducible case.

On the basis of the equivalence between the Lagrangian and the Hamiltonian formalisms based
on the (gh,lev) graduation, like in the irreducible case ([14]), a new simple and efficient gauge fixing
procedure can be proposed.

A complete construction of a sp(3) BRST Lagrangian theory and the equivalence between this
formulation and the sp(3) BRST Hamiltonian one will be done in forthcoming papers.
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