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Abstract

A dusty plasma is a complex system containing electrons, ions and massive dust grains. After
a short introduction of the main characteristics of a dusty plasma, the charging process of the
dust grains is analyzed. For reasonable plasma parameters this is a very fast process compared
to the slow motion of the dust acoustic waves(DAW). This fact allows us to introduce the “local
equilibrium approximation”(LEA) in the study of the charging process. According to LEA the same
equation giving the dust particle charge is used both in the equilibrium case, and in the situation
when a slow DAW is moving through the plasma. Then both the linear and nonlinear DAW are
studied taking into account the dust particle charge variation. Using a multiple scales approach the
nonlinear DAW are described by the KdV equation, and the influence of charge variation on the
soliton parameters is determined. Few comments about the limitation of this approach are finally
given.

1 Introduction

A dusty plasma is a complex medium composed of electrons, different species of positive, negative ions
and also massive particles of dust which not only perturb the plasma properties but also can introduce
new phenomena. Even in the simplest case of one type of spherical dust particles of mass md and radius
rd, the problem is complicated by the fact that the grain charge qd is a dynamical variable depending
on the local characteristic of the plasma (local potential ϕ). Although the dust particulates density,
nd, is several orders smaller than the densities of the other plasma species, the charge accumulated
on the dust grains is high enough to give the charge density qdnd of the dust fluid the same order
of magnitude as the other charge densities present. This is the reason why dusty plasmas can have
different and new properties with respect to dust free (pure) plasmas. In the following we shall consider
a plasma containing only one species of positive, single ionized ions. Without the influence of other
external, ionizing factors (an external radiation field producing photoionizations, energetic particles,
etc.), due to impinging electrons and ions on the dust particles, these become negatively charged.
Denoting by ne0, ni0, nd0 the equilibrium densities of electrons, ions and dust particles respectively,
the macroscopic neutrality condition writes

ni0 = Zdnd + ne0 (1.1)

If Zdnd0 is of order of ni0, one sees that ne0 ¿ ni0 and the electron fluid is strongly depleted with
respect to an usual plasma (ni0 ' ne0). The missing electrons are those fixed on and creating the
negative charge of the dust particles.

One of the general properties of a plasma is the Debye shielding of a charged impurity. This is
characterized by the Debye shielding length λD. In a region far from the charged impurity (the volume
close the impurity has low contribution to the screening) the following relation for λD can be derived

1
λ2

D

=
1

λ2
De

+
1

λ2
Di

=
e2ne0

ε0kBTe
+

e2ni0

ε0kBTi
(1.2)

178

odile
Text Box
Physics AUC, vol. 18, 178-187 (2008)

odile
Text Box
PHYSICS AUC



where Te, Ti are the equilibrium temperatures of the electron and ion fluid respectively. If ne0 ¿ ni0

one sees that λD ' λDi, and thus, the screening properties are determined by ions. If a is the mean
distance between two dust particles, the system is a real dusty plasma if and only if a < λD and
the dust particles are directly interacting and participating to the collective properties of the plasma.
Otherwise, when a > λD, the system is composed of dust particles in a plasma and their influence can
be treated perturbatively (plasma with dust).

When a plasma is disturbed from its equilibrium state, the resulting internal space charged field
gives rise to collective motions of the plasma constituents, which tend to restore the original charge
neutrality. These collective oscillations are characterized by a natural frequency, called the plasma
frequency. For each species s = e, i, d, one can write a continuity equation

∂ns

∂t
+∇ (ns ~vs) = 0 (1.3)

and a momentum equation
∂ ~vs

∂t
+ (~vs · ∇) ~vs = − qs

ms
∇Φ. (1.4)

This system of equations is closed by the Poisson’s equation

∇2Φ = − 1
ε0

∑

{s}
qsns (1.5)

Under the assumption that the amplitude of the oscillations are small, equations (1.3) and (1.4) can be
substituted by their linear approximations and eliminating the speeds from the equation system (1.3)-
(1.5), then integrating twice over space with equilibrium boundary conditions at infinity, a harmonic
oscillator equation for the internal field is obtained

d2Φ
dt2

+ ω2
pΦ = 0, (1.6)

ω2
p =

∑

{s}
ω2

ps =
∑

{s}

ns0q
2
s

ε0ms

where ωps represents the plasma frequency associated to the plasma s-type constituent. It should
be noted that for the case of a dusty plasma, the dust fluid frequency ωpd ∼ m

−1/2
d is much smaller

that the frequencies associated to the other constituents and this is the basis of the “local equilibrium
approximation” that will be used in the followings for the treatment of dust acoustic waves and solitons.

Another parameter characterizing a dusty plasma is the Coulomb coupling parameter, defined as
the ratio between the interaction potential energy among two dust particles separated by a distance
a, and the mean dust thermal kinetic energy

ΓC =
q2
d

4πε0akBTd
exp

(
− a

λD

)
(1.7)

When ΓC ¿ 1 one gets the case of a weakly coupled system which is the usual situation in space
and laboratory conditions as well as the subject of the present research report. At the opposite limit
ΓC À 1 (ΓC ≥ 170), the strong coupling may lead, as it has already been realized in laboratories in
special conditions, to a phase transition from the disordered fluid state to an ordered crystalline phase
(Wigner’s crystal).

If dust is a nuisance in every day life, it is a common and unavoidable presence in space conditions
and also in many laboratory devices. Let us give some examples: interstellar and circumstellar clouds
(the collapse of these clouds give birth to stellar clusters), in planetary rings, in comet tails (when
in vicinity of Sun or other heat source), in Earth’s atmosphere as noctilucent clouds observed during
polar summer mesopause. It is present in many laboratory devices such as DC and RF dischargers, in
plasma processing reactors and fusion plasma devices (tokamaks and stellerators) and so on. Several
review articles and books [1] - [7], to mention just a few of them, are a good introduction to this
rapidly developing field of plasma physics.
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2 Dust Charging Process

As mentioned before, without any external ionizing processes, the dust particles become negatively
charged since the electron thermal speed is much larger than the ion thermal speed. In the orbit-
limited motion approximation, the electronic and ionic currents which fall onto the dust grain are
given by the following expressions

Ie = −4πr2
dnee

(
kBTe

2πme

)1/2

exp
(

eΦd

kBTe

)
(2.1)

for the electron current (also for any other single ionized, negatively charged species in the plasma)
and

Ii = 4πr2
dnie

(
kBTi

2πmi

)1/2 (
1− eΦd

kBTi

)
(2.2)

for the positive ionic current. Here Φd = Φg −Φp is the difference between grain potential Φg and the
plasma one Φp. As negative charges accumulate on the dust grain surface the negative constituents
of the plasma are more and more repelled and finally an equilibrium situation is attained when

Ie + Ii = 0 (2.3)

Together with the neutrality condition (1.1), it leads to the following equation determining the equi-
librium value of Φd [1],[3],[5],[6]

(
Ti

Te

me

mi

)1/2 (
1− eΦd

kBTi

)
exp

(
− eΦd

kBTe

)
= 1− Zd0

nd0

ni0
(2.4)

For spherical shaped dust grains of radius rd the potential Φd is related to the charge qd = −Zde by

Φd = − e

4πε0

Zd0

rd
(2.5)

and thus the equilibrium value of Zd0 can be determined for given parameters of the dusty plasma.
With the notations

σ =
Ti

Te

Y = − eΦd

kBTi
=

e2

4πε0rd

1
kBTi

Zd0 (2.6)

P = −Zd0

Y

nd0

ni0
=

4πε0rd

e2
kBTi

nd0

ni0

the relation (2.4) writes
√

σ(1 + Y ) =
√

mi

me
(1− PY ) exp(−σY ) (2.7)

which can be solved numerically for each value of P. One has to mention that these expressions are
valid if the streaming speeds of electrons and ions are much smaller than their thermal velocities.

In order to understand better the charging process it is necessary to evaluate the time characterizing
the evolution of the dust grain charge to its equilibrium value after a perturbation occurs (the charging
– relaxation time). As perturbation we shall consider a small sudden change in the potential Φd but
taking P constant (corresponding to the equilibrium values of nd and ni). The time evolution of the
dust grain charge is given by

dZd

dt
= −Ii + Ie

e
(2.8)

Using the expressions (2.1) and (2.2) for the currents Ie and Ii (with Te = Ti = T ) and writing

Y → Y0 + y, (2.9)
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where Y0 is the equilibrium value, solution of equation (2.8), and y ¿ Y0 a small perturbation, one
obtains

dy

dt
= −2 + Y0√

2π

ω2
pird

ci
y, (2.10)

where ci =
√

kBT
mi

is the thermal velocity of ions and ωpi =
(

e2ni0
ε0mi

)1/2
is the plasma frequency of the

ionic fluid. Assuming y ∼ exp(−t/τ), where τ is the charging (relaxation) time, one gets

1
τ

=
2 + Y0√

2π

ω2
pird

ci
(2.11)

A numerical evaluation for reasonable physical conditions gives τ ∼ 10−7 − 10−5 sec.. Compared to
the slow time scale characteristic for the evolution of dust acoustic waves, one can conclude that the
charging process is a fast one.

3 Dust Acoustic Waves in a Dusty Plasma

It is well known that a great variety of collective wave phenomena may arise in a plasma, due to
the coherent motion of its constituents. In the absence of a magnetic field, one will consider only
longitudinal waves produced by densities and potential fluctuations. The presence of charged dust
grains can modify, or even dominate the wave phenomena. This is especially true in the low-frequency
regime, where linear and nonlinear dust acoustic (DA) waves appear. They are produced by variations
from the quasi-neutrality condition and determined by the dust particle dynamics. In the following
we shall discuss briefly the properties of these low-frequency longitudinal waves, in a weakly coupled
plasma, taking into account the dust charge variation.

The DA waves were predicted theoretically by Rao, Shukla and Yu in 1990 [8], [1], [3]. The phase
velocity of the DA waves is much smaller than the electron and ion thermal speeds, and consequently
in a first, but very good, approximation, one may assume that electrons and ions are in permanent
thermal equilibrium with the local potential (the movement of the charged dust fluid is so slow that at
any moment, the electronic and ionic fluids have enough time to restore the local equilibrium). Then
the first equations describing the system are

ne = ne0 exp
(

eΦ
kBTe

)
(3.1)

ni = ni0 exp
(
− eΦ

kBTi

)

where Te, Ti are the temperatures of the electron and ion fluid respectively and ne0, ni0 the equilibrium
values of their densities. As regards the movement of the dust particle fluid, this is described by a
continuity equation

∂nd

∂t
+∇ (nd~ud) = 0 (3.2)

and a momentum equation

md

(
∂

∂t
+ ~ud∇

)
~ud = −qd∇Φ− 3kBTd

nd
∇nd (3.3)

In these relations nd is the dust number density, ~ud the velocity of dust fluid of temperature Td, and
qd < 0 the negative charge of the dust particle. In the right-hand side of equation (3.3), the first term
is the electric force, while the second one represents the force due to the pressure gradient. The set of
these equations is completed by Poisson’s equation

∇2Φ =
e

ε0
(ne + Zdnd − ni) (3.4)
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Assuming equilibrium conditions at infinity, the boundary conditions of these quantities are

nj → nj0, (j = e, i, d), qd → qd0 = −eZd0, Φ = 0 (3.5)

and the equilibrium values nj0, Zd0 are satisfying the neutrality condition (1.1).
In the previous section it was shown that the charging process of dust particles is a fast one.

Therefore one can assume that during the slow propagation of dust acoustic waves the electronic and
ionic local currents have enough time to charge the dust particles at their local equilibrium values.
Otherwise said, one considers the equation (2.8) true not only for the equilibrium values, but also for
the local values nj(~r, t) taken by these densities during the slow evolution of the acoustic wave. It is
the simplest assumption that can be done and it is similar to that invoked for justifying the equations
(3.1). In the followings, it will be called “the local equilibrium approximation”(LEA). The results
obtained for linear and nonlinear DA waves will be compared to existing results [9],[10],[11],[1], found
using similar but more complex approximations.

Using the notations σ, Y , P defined previously (2.6), the local equilibrium condition resumes to
the relation (2.7). The equations (3.1)–(3.4) and (2.7) together with the boundary conditions (3.5)
constitute a complete set of equations from which the linear and nonlinear (dust acoustic) waves can
be derived.

3.1 Linear Dust Acoustic Waves

Let us discuss first the linear DA waves. In the linear approximation, the equations (3.1) - (3.4)
become

ne1 = ne0
eΦ

kBTe
, ni1 = −ni0

eΦ
kBTi

∂nd1

∂t
+ nd0∇~ud = 0 (3.6)

md
∂~ud

∂t
= eZd0∇Φ− 3kBTd

nd0
∇nd1

∇2Φ =
e

ε0
(ne1 − ni1 + nd0Zd1 + Zd0nd1)

Here we considered nj = nj0 + nj1, Zd = Zd0 + Zd1 with nj1 ¿ nj0 and Zd1 ¿ Zd0. Also one writes
Y = Y0 + y, P = P0 − p, with P0, Y0 defined by (2.6) and satisfying the equilibrium condition (2.7).
According to LEA, Y and P obey the same relation (2.7) and therefore, the following expression for
y and p is deduced [

1 + P0

1 + Y0
+ σ(1− P0Y0)

]
y = Y0p (3.7)

But from their definitions (2.6) we get

y =
e2/4πε0rd

kBTi
Zd1 (3.8)

p =
kBTi

e2/4πε0rd

(
ni1

ni0
− nd1

nd0

)
nd0

ni0

and using (3.7), Zd1 is easily calculated in terms of the density fluctuations ni1 and nd1. One obtains

nd0Zd1 = A

(
nd0

ni0
ni1 − nd1

)
(3.9)

where the dimensionless parameter A is given by

A = Y0

(
kBTi

e2/4πε0rd

)2 [
1 + P0

1 + Y0
+ σ(1− P0Y0)

]−1 nd0

ni0
(3.10)

182



Looking for plane wave solutions, exp
[
i
(
~k · ~r − ωt

)]
, one gets the following dispersion relation

ω2 = 3v2
Tdk

2 +
c2
d

(
1− A

Zd0

)
k2

1− λ2
D

λ2
Di

nd0
ni0

A + λ2
Dk2

(3.11)

where vTd =
(

kBTd
md

)1/2
is the thermal speed of dust particles, λD is the Debye screening length,

cd = ωpdλD is the speed of the DAW and ωpd =
(

e2Z2
d0nd0

ε0md

)1/2
is the plasma frequency of the dust

fluid. Neglecting the effect of the dust particle charge variation (taking A = 0) (3.11) transforms into
the well known result [1],[8]

ω2 = 3v2
Tdk

2 +
c2
dk

2

1 + λ2
Dk2

(3.12)

It is worth mentioning that a similar LEA was used by Ma and Liu [11] in their study on DAW in a
dusty plasma. Comparing the charging time τch with a hydrodynamic time τh ∼ ω−1

pd , for reasonable
values of plasma parameters, they found τch ¿ τh and concluded that during slow motion of a DA
wave the charge on the dust particles has enough time to reach the local equilibrium conditions.

Low frequency DA waves (in the range of few Hz) were experimentally observed [12], confirming
the hypothesis of the local equilibrium approximation. As A given by (3.10) is a small quantity, the
effect of dust particle charge variation on the linear DAW frequency is also small. More elaborated
discussions [1],[9][13]-[15], show a damping of the DAW due to the delay in the charging process of
dust particles. Such an effect cannot be obtained in our simplified treatment.

3.2 Dust Acoustic Solitons

The fluid equations describing a plasma are intrinsically nonlinear. The effect of nonlinearity is
a cumulative process, manifesting at large space and time values, and leading to the formation of
localized robust nonlinear structures – solitary waves and solitons in completely integrable situations.
In plasma physics the solitons are well known for a long time [16] - [18]. They are described by the
Korteweg - de Vries equation, which is completely solvable using the ”inverse scattering method“
[16], [17]. The Korteweg-de Vries equation is found applying an adequate asymptotic method to the
nonlinear fluid equations describing the plasma [19], [16]-[18]. In the present section this problem is
discussed for a dusty plasma. Different kinds of solitons appear in different frequency regimes. For
dust acoustic solitons (DAS) the dust particle motion is considered, the electrons and ions being in
thermal equilibrium with the local potential. In another frequency range, for dust ion-acoustic solitons
(DIAS) - when the motion of ions is considered, the dust particles can be considered at rest. The topic
of this section is the study of DAS, taking into account the charge variation of the dust particles.

It is convenient to use dimensionless variables and quantities. For simplicity the same temperature
for all the plasma constituents (Te = Ti = Td = T ) is assumed. The space coordinate x will be

measured in units of Debye length λd, λd =
(

ε0kBT
e2Zd0nd0

)1/2
, the time variable t in units of ω−1

pd , where

ωpd is the plasma frequency for the dust fluid, ωpd =
(

q2
d0nd0

ε0md

)1/2
, the dust fluid velocity ud in units of

cd =
(

kBT
md

Zd0

)1/2
= ωpdλd, the dust particle thermic velocity, the electrostatic potential in units of

kBT/e, the charge number Zd in units of equilibrium value Zd0 and the number densities ns (s = e, i, d)
in units of their equilibrium values ns0 respectively. Then the dust particle fluid is described by a
continuity equation and an equation of motion

∂nd

∂t
+

∂

∂x
(udnd) = 0 (3.13)

∂ud

∂t
+ ud

∂ud

∂x
= Zd

∂ϕ

∂x
(3.14)
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(only the electric force is considered) and Poisson equation

∂2ϕ

∂x2
= −µini + µene + Zdnd (3.15)

where
µs =

ns0

nd0Zd0
, s = e, i (3.16)

The electrons and ions are considered in thermal equilibrium with the local potential, and using the
previously defined dimensionless variables, one has

ne = exp (ϕ) ni = exp (−ϕ) (3.17)

To these one has to add the equation (2.7) (with σ = 1) giving the dust particle charge in the local
equilibrium approximation adopted here

(1 + Y ) =
√

mi

me
(1− PY ) exp(−Y ) (3.18)

where

Y = Y0Zd, Y0 =
e2/4πε0rd

kBT
Zd0

P = P0
nd

ni
, P0 =

kBT

e2/4πε0rd

nd0

ni0

(3.19)

To study the dynamics of small, but finite amplitude DAS, the reductive technique [19] (multiple
scale analysis) is employed. One introduces the stretched variables

ξ = ε1/2(x− v0t), τ = ε3/2t (3.20)

and expand ns, ud, ϕ, Zd in power series of ε

ns = 1 + εn(1)
s + ε2n(2)

s + . . . , s = e, i, d

ud = εu
(1)
d + ε2u

(2)
d + . . .

ϕ = εϕ(1) + ε2ϕ(2) + . . .

Zd = 1 + εZ
(1)
d + ε2Z

(2)
d + . . .

(3.21)

Introducing these in the equations (3.13)-(3.15) and (3.18), in order zero of ε from the Poisson equation
one gets

µi = 1 + µe

which is merely another form to express the neutrality condition at equilibrium. In the first order of
ε the following relations are obtained

u
(1)
d = − 1

v0
ϕ(1), n

(1)
d = − 1

v2
0

ϕ(1)

n(1)
e = ϕ(1), n

(1)
i = −ϕ(1)

(
µi + µe − 1

v2
0

)
ϕ(1) + Z

(1)
d = 0

(3.22)

where the last expression was obtained from the Poisson equation. Taking into account (3.21) and the
definitions (3.19), one has

Y = Y0

(
1 + εZ

(1)
d + ε2Z

(2)
d + . . .

)

P = P0

{
1 + ε

(
n

(1)
d − n

(1)
i

)
+ ε2

[
n

(2)
d − n

(2)
i +

(
n

(1)
i

)2
− n

(1)
d n

(1)
i

]
+ . . .

} (3.23)
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and in first order of ε, the following relation between Z
(1)
d and ϕ(1) is found from (3.18)

Z
(1)
d = −B

(
1− 1

v2
0

)
ϕ(1)

1
B

= 1 +
(2 + Y0)(1− P0Y0)

P0(1 + Y0)

(3.24)

Introducing (3.24) into the last relation (3.22), one gets the expression for v0

v0 =
[

1−B

µi + µe −B

]1/2

(3.25)

Taking B = 0, (3.25) writes
v0 = (µi + µe)

−1/2

which is the result when the charge of the dust particle is constant [1].
In order ε2 one obtains

∂

∂ξ

(
−v0n

(2)
d + u

(2)
d

)
− 1

v2
0

∂ϕ(1)

∂τ
+

2
v3
0

ϕ(1) ∂ϕ(1)

∂ξ
= 0

− ∂

∂ξ

(
1
v0

ϕ(2) + u
(2)
d

)
− 1

v2
0

∂ϕ(1)

∂τ
+

1
v3
0

ϕ(1) ∂ϕ(1)

∂ξ
− B

v0

(
1− 1

v2
0

)
ϕ(1) ∂ϕ(1)

∂ξ
= 0

from the continuity and the momentum equation respectively. Here the relations (3.21) - (3.22) were
used to express all the first order quantities with respect to ϕ(1). Eliminating u

(2)
d from the above

equations one remains with

∂

∂ξ

(
1
v2
0

ϕ(2) + n
(2)
d

)
+

2
v3
0

∂ϕ(1)

∂τ
−

[
3
v4
0

− B

v2
0

(
1− 1

v2
0

)]
ϕ(1) ∂ϕ(1)

∂ξ
= 0 (3.26)

The Poisson equation in order ε2 gives

∂2ϕ(1)

∂ξ2
= (µi + µe) ϕ(2) − 1

2

(
ϕ(1)

)2
+ n

(2)
d + Z

(2)
d − B

v2
0

(
1− 1

v2
0

)(
ϕ(1)

)2
(3.27)

Here we used equation (3.24) and

n
(2)
e,i = ±ϕ(2) +

1
2

(
ϕ(1)

)2

But from (3.18), in order ε2, one obtains

Z
(2)
d = −B

(
n

(2)
d + ϕ(2)

)
−BD

(
ϕ(1)

)2

D = −1
2

+
(

1− 1
v2
0

)[
1 + B

(
1− 1

v2
0

)(
1 + BY0

(1− P0Y0)(3 + Y0)
2P0(1 + Y0)

)] (3.28)

Introducing (3.28) into (3.27) we get

∂2ϕ(1)

∂ξ2
= (µe + µi −B)ϕ(2) + (1−B)n(2)

d − 1
2
K

(
ϕ(1)

)2
(3.29)

where

K = 1 + 2B

[
1
v2
0

(
1− 1

v2
0

)
+ D

]
(3.30)
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Then, using the definition of v0, the equation (3.29) can be written

1
1−B

∂3ϕ(1)

∂ξ3
+

K

1−B
ϕ(1) ∂ϕ(1)

∂ξ
=

∂

∂ξ

(
n

(2)
d +

1
v2
0

ϕ(2)

)

which combined with (3.29) allows the second order terms elimination.
Finally ϕ(1) is satisfying the following Korteweg - de Vries equation

2
v3
0

∂ϕ(1)

∂τ
+

1
1−B

∂3ϕ(1)

∂ξ3
−Mϕ(1) ∂ϕ(1)

∂ξ
= 0

M =
3
v4
0

− B

v2
0

(
1− 1

v2
0

)
− K

1−B

(3.31)

For B = 0, the equation (3.31) writes

∂ϕ(1)

∂τ
− asϕ

(1) ∂ϕ(1)

∂ξ
− bs

∂3ϕ(1)

∂ξ3
= 0

as =
v3
0

3

(
3
v4
0

− 1
)

> 0, bs =
v3
0

3

(3.32)

and this corresponds to the result obtained when the electrical charge on the dust particles is constant.
As µi > 1, we have v0 < 1 and consequently as > 0 [1]. For small B we expect that these conclusions
remain true also for equation (3.31). Defining

as =
v3
0

2
M > 0, bs =

v2
0

2(1−B)
(3.33)

the one soliton solution of (3.31) is

ϕ(1)(ξ, τ) =− ϕ(1)
m sech2 [(ξ − u0τ)/∆]

ϕ(1)
m =

3u0

as
, ∆ =

√
4bs

u0

(3.34)

describing a propagating soliton with velocity u0 and with n
(1)
d (ξ, τ) > 0 (from (3.22) n

(1)
d > 0 if

ϕ(1) < 0) i.e. a compressive solitary wave.

4 Concluding remarks

In the previous sections, the ”local equilibrium approximation“ was used to determine the linear and
the nonlinear (soliton) dust-acoustic wave solutions. It is in authors’ opinion the simplest way to
take into account the charge fluctuations on the dust particles. The effect is a (real) shift of the
characteristic properties of the linear and nonlinear solutions with respect to the unperturbed ones.
In their work on the effect of the dust grain charge fluctuations on the dust acoustic solitons, Rao and
Shukla [10],[1] used a quite similar approximation. They determine a Sagdeev (nonlinear) potential
V (ϕ,Zd) controlling the stationary evolution of plasma potential

1
2

(
dϕ

dξ

)2

+ V (ϕ,Zd) = 0 (4.1)

and the effect of charge fluctuation is investigated numerically. It is worth to compare their results
with the present ones for given parameters of the dusty plasma.

A better analysis of the effect of the dust particle charge fluctuations can be done using a kinetic
approach [20]. In this way the effect of collisions between plasma constituents can be taken into
account. Usually the effect of these collisions is a damping factor for plasma excitations, and the
comparison with experimental facts is better. Such an approach should be better for dust ion acoustic
(DIA) waves [1], [21]-[25], where a local equilibrium approximation is questionable.
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