
Quantum Fields on Noncommutative Spaces

Ciprian Acatrinei
Horia Hulubei National Inst. of Nucl. Phys. and Engineering,

P.O. Box MG-6, 077125 Bucharest, Romania
acatrine@theory.nipne.ro

Abstract

We review the operatorial quantization of fields defined on noncommutative spaces, offering an
insightful alternative to the usual (Wigner-Weyl-)Moyal procedure. One can demonstrate that the
elementary degrees of freedom are bilocal, and live on a reduced configuration space. Perturba-
tion theory is easily formulated, and the IR-UV mixing is simply interpreted in this framework.
Causality issues become particularly transparent.

Noncommutative (NC) field theories (FT) [1] attracted considerable attention over the last decade.
Heuristic arguments appeared to favour a dipolar nature of the degrees of freedom of such theories
[2, 3]. Nevertheless, the terminology employed is more vague, referring to nonlocality, or to ”nonlocality
of a peculiar nature”. Also, most of the work done in the field uses the Weyl-Moyal approach.

We review here a different approach, based on a canonical quantization procedure [4], which
simply but rigourously demonstrates the intrinsic bilocal nature of noncommutative fields. By avoiding
reference to the Weyl space of symbols (implicit in the Moyal approach) it renders transparent the
nature of the real space-time on which dynamics takes place, and on which measurements could be
performed. This approach allows one to view our space from different perspectives [4, 5], corresponding
to the representation of the NC algebra one chooses. It also permits to show the finite character
of classical noncommutative waves, even at the location of the source [5]. Interactions are naturally
described in terms of dipoles, and an instructive interpretation of the IR/UV mixing becomes available.
Causality is unambiguously defined and shown to hold at least for theories with commutative time.

Bilocal objects
The simplest NC field is a (2 + 1)-dimensional scalar Φ(t, x̂, ŷ), defined over a commuting time t

and a pair of NC coordinates which satisfy

[x̂, ŷ] = iθ. (1)

The extension to several NC pairs is straightforward. The action is

S =
1
2

∫
dt TrH

[
Φ̇2 − (∂xΦ)2 − (∂yΦ)2 −m2Φ2 − 2V (Φ)

]
. (2)

We will exemplify with a quartic potential, V (Φ) = g
4!Φ

4. The operators x̂ and ŷ act on a harmonic
oscillator Hilbert space H in the usual way. H may be given a discrete basis {|n >} formed by
eigenstates of x̂2 + ŷ2 [5], or a continuous one {|x >}, composed of eigenstates of, say, x̂ [4]. Another
possibility is to use as a basis the standard coherent states.

To quantize Φ [4], we start with a usual classical commuting field, expanded into normal modes
with coefficients a and a∗. Upon usual field quantization, a and a∗ become operators acting on a
standard Fock space F . To make the underlying space noncommutative, let us introduce (1) and
apply the Weyl (not Weyl-Moyal!) quantization procedure to the exponentials ei(kxx+kyy). The result
is

Φ =
∫ ∫

dkxdky

2π
√

2ω~k

[
âkxkye

i(ω~k
t−kxx̂−ky ŷ) + â†kxky

e−i(ω~k
t−kxx̂−ky ŷ)

]
. (3)
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which means the following: Φ is a ‘doubly’-quantum field operator, acting on a direct product of two
Hilbert spaces, Φ : F ⊗H → F ⊗H. Physically, Φ creates (destroys), via â†kxky

(âkxky), an excitation

represented by an ”operatorial plane wave” ei(ω~k
t−kxx̂−ky ŷ). We now discuss the nature of such an

excitation.
One could work with Φ as an operator ready to act on both F and H . It is however simpler to

saturate its action on H, working with expectation values < x′|Φ|x >: F → F . It is at this point,
while eliminating noncommutativity, that bilocality appears. To see that, consider the family {|x >}
of eigenstates of x̂: x̂|x >= x|x >, ŷ|x >= −iθ ∂

∂x |x >. A simple but key equation is

< x′|ei(kxx̂+ky ŷ|x >= eikx(x+kyθ/2)δ(x′ − x− kyθ) = eikx
x+x′

2 δ(x′ − x− kyθ). (4)

This is a bilocal expression, and we already see that its span along the x axis, (x′−x), is proportional
to the momentum along the conjugate y direction, i.e. (x′ − x) = θky. In general, for n pairs of NC
directions, one can keep only one coordinate out of every pair; commutativity is gained on the reduced
space, at the expenses of strict locality. Using Eqs. (3) and (4) one sees that

< x′|Φ|x >=
∫

dkx

2π
√

2ωkx,ky

[
âkx,kye

i(ω~k
t−kx

x+x′
2

) + â†kx,−ky
e−i(ω~k

t+kx
x+x′

2
)
]

(5)

where ky = (x′ − x)/θ. Thus, Φ annihilates a linear combination of rods of (arbitrary) momentum kx

and (fixed) length θky, and creates rods of momentum kx and length −θky. It is not anymore a local
operator, in contrast to usual field theory. Due to (1), one degree of freedom apparently disappears
from (5). However it shows up through the modified dispersion relation

ω
(kx,ky=x′−x

θ
)
=

√
k2

x +
(x′ − x)2

θ2
+ m2. (6)

One notices the intrinsic IR/UV-dual character of the dipoles: both big momentum (UV) and big
extension (IR) increase the energy. This second term reminds a string stretched between two separated
D-branes.

Correlators
Two-point correlation functions for such dipoles are the VEV of the product of two bilocal fields

(taken on the vacuum, |0〉, of the Fock space F):

〈0| < x4|Φ|x3 >< x2|Φ|x1 > |0〉 =
∫

dkx

8π2ω~k

eikx[
x3+x4

2
−x1+x2

2
]δ(x4 − x3 − x2 + x1). (7)

Again, ky = (x′ − x)/θ, ω~k
= ωkx,ky obeys (6), and there is no integral along ky. If one compares

(7) to the (1 + 1)-dimensional correlator of two commutative fields, 〈0|φ(X2)φ(X1)|0〉, with X1 =
(x1 + x2)/2 and X2 = (x3 + x4)/2, the differences are the (x′−x)2

θ2 term in (6), and the delta function
δ([x4−x3]− [x2−x1]), which ensures that the length of the rod is conserved. Thus, our bilocal objects
propagate in a (1+1)−dimensional space. The extra y direction is accounted for by their lenght, which
contributes to the energy, and their orientation. Although we also call these rods dipoles, they do not
necessarily have charges at their ends and they have extension in the absence of any background. Those
rods may remind one about stretched open strings, or the double index representation of Yang-Mills
theories.

Interactions
The quartic interaction term in (2) can be written as

∫
dtTrHV (Φ) =

g

4!

∫
dt

∫

x,a,b,c
< x|Φ|a >< a|Φ|b >< b|Φ|c >< c|Φ|x > . (8)

To find the Feynman rules, we need the vacuum correlator (7), and a slight modification of the Dyson
procedure. The basic ‘vertex’ for four-dipole scattering follows from

〈−~k3,−~k4| :
∫

dt

∫

x,a,b,c
< x|Φ|a >< a|Φ|b >< b|Φ|c >< c|Φ|x >: |~k1,~k2〉. (9)
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|~k1,~k2〉 is a Fock space state with two quanta of momentum ~k1 and ~k2. The momenta ~ki,i=1,2,3,4 have
each two components: ~ki = (ki, li). ki is the momentum along x, whereas li represents the dipole
extension along x (corresponding to the momentum along y) . Using Eq. (5) and integrating over
x, a, b and c, one obtains the conservation laws k1 + k2 + k3 + k4 = 0 and l1 + l2 + l3 + l4 = 0. The
final result differs from the four-point scattering vertex of (2+1) commutative particles with momenta
~ki = (ki, li) only through the phase

e
− iθ

2

∑
i<j

(kilj−likj). (10)

This is precisely the star-product modification of the usual Feynman rules. The phase (10) appears
due to the bilocal nature of generic < x′|Φ|x >’s.

By contracting various terms in (9), one obtains the one-loop corrections to the free rod propagator,
together with the recipe for calculating loops. Again, the derivation is straightforward. The main point
is that, in the end, one has to integrate over both the momentum and length of the dipole circulating
in a loop. This 1

2π

∫
dkloop

∫
dlloop integration, together with the dispersion relation (6), brings back

into play - especially as far as divergences are concerned - the y direction. It is easy to extend the
above reasoning to (2n+1)−dimensions: unconstrained dipoles will propagate in a (n+1)-dimensional
commutative space-time, with Feynman rules obtained as outlined above. Once the dipole lengths are
interpreted as momenta in the conjugate directions, the rules are identical to those obtained long ago
via star-product calculus.

IR/UV
We have derived directly from field theory the dipolar character of NC excitations; the momentum

in the conjugate direction became the lenght of the dipole. A connection between UV and IR physics
appeared naturally, and on a somehow more rigorous basis than in [6], for instance.

One can also view geometrically the differences between planar and nonplanar loop diagrams,
and the role of low momenta in nonplanar graphs. To illustrate this, consider (4 + 1)-dimensions,
t, x̂, ŷ, ẑ, û, with [x̂, ŷ] = [ẑ, ŵ] = iθ. In the {|x, z >} basis, one has a commutative space spanned by
the axes x and z, on which dipoles with momentum ~p = (px, pz) and length ~l = (lx, lz) = θ(py, pw)
evolve. During the scattering, four such dipoles meet in a four-edged poligon of area A (figure 1a).
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figure 1: Area versus finiteness

The one-loop correction to the propagator involves both planar and nonplanar diagrams. In the
planar case, adjacent dipole fields are contracted. Momentum and length conservation enforce then
the poligon to degenerate into a one-dimensional, zero-area object (figure 1b). UV divergences persist.
In the nonplanar case, due to the nonadjacent contraction the area A does not go to zero (cf. figure
1c) unless the external dipole length vanishes (figure 1d). A 6= 0 appears thus to be related to the
disappearance of UV divergences. Actually, the true regulator is the phase (10). This is zero, i.e.
ineffective, when A = 0 in both the |x, z > and |y, u > bases. That corresponds to zero external length
and momentum in the dipole picture, which means that the resulting divergence is half IR (~pext = 0)
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and half UV (~lext = 0)! In Weyl space this is just the usual zero external momentum, say pext
µ = 0,

and one speaks about an IR divergence. For dipoles the divergence comes from having zero vertex
area A in any basis, and is half IR and half UV. NCFT appears to be somehow in between usual FT
and string theory: when the interaction vertex is a point, UV infinities appear; when it opens up, as
in string theory, amplitudes are finite.

Causality
Causality is an essential feature of any physical model. In usual field theory, it is defined via the

ordering of precise events taking place in space-time. For a field φ depending on space-time coordinates
xµ = (x0 = t, x1, x2, x3), the (micro)causality condition reads

[φ(x), φ(0)] = 0, t2 − ~x2 ≤ 0. (11)

It reflects the assumption that two events having space-like separation cannot influence each other.
In the NCFT literature causality is rarely discussed, and even then with contradictory results.

The reason is the use of the Weyl-Moyal quantization procedure, in which NC space is mapped to the
commutative space of Weyl symbols, whose correspondence to physical space (assumed NC) is at best
statistical. Thus, a ”point” in Weyl symbol space has no precise correspondent in the physical (NC)
space. On the other hand the product of functions gets deformed to the Moyal star product

f(x) · g(x) → f(x) ? g(x) ≡ lim
y→x

exp
(

i

2
θµν∂x

µ∂y
ν

)
f(x)g(y). (12)

In consequence, if one wants to generalize the causality condition (11) to NC fields, one encounters
two ambiguities.

1. It is not clear whether one should take the commutator or the star-commutator of two fields
[7].

2. It is not clear what a ”space-like interval” means when some of the coordinates are noncom-
muting - hence not all can be sharply measured simultaneously. Several conditions were used in the
literature, for events separated by the quadri-vector (∆t, ∆~r) in Weyl space:

a) the usual light-cone condition: ∆t2−∆x2−∆y2−∆z2 ≤ 0, too weak to always ensure vanishing
of the commutator of two fields.

b) the light-wedge condition: ∆t2 − ∆z2 ≤ 0 [8, 9], which drops completely the noncommuting
coordinates; it is too strong, since it operates only on the commuting part of the space; it cannot be
implemented if no commuting coordinate z is available.

c) an intermediate condition: ∆t2−∆z2 ≤ 2θ [10], with the RHS trying to account for the average
spreading ∆x2 + ∆y2. It involves a statistical correction with respect to the condition (b) above and
is still inappropriate [10], as we will also see.

We will remove both ambiguities, using the canonical framework of [4, 5]. The first ambiguity is
disposed of simply by using an operatorial formulation, in which the commutator is uniquely defined.
The second, more vexing, problem is solved since, as it will be shown, it is natural to drop one of the
noncommuting coordinates, say y, and then require zero commutator provided ∆t2−∆x2−∆z2 ≤ 0,
but in physical space, not in Weyl space. In consequence, we will show - disproving previous claims,
that NC theories with commuting time are causal.

It has been shown in [4] that free NC fields behave exactly like commutative fields living in a
lower-dimensional space. In fact a free (1 + 1)-dimensional dipole [resulting from the 2 + 1 NC theory
we were discussing] with endpoints situated at x and x′ behaves like a commutative (1 + 1) point
particle centered at x+x′

2 , but with a modified dispersion relation ω2 = k2
x + (x−x′)2)

θ2 . In conclusion all
usual manipulations performed on propagators in (1 + 1)-dimensions can be carried over, including
those used to demonstrate causality. This immediately shows that at the free level NC field theories
are causal, contrary to previous claims [7].

For interacting fields, one expects the dipolar character of the degrees of freedom to manifest, as
e.g. in perturbation theory [4]. It is however remarkable that as far as causality issues are concerned,
bilocality has little influence, and a proof of causality can be given like for commutative theories. For,
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consider the vanishing of the commutator to hold,

[φ(t1, x̄1), φ(t2, x̄2)] = 0 (13)

with x̄1 = x1+x′1
2 , x̄2 = x2+x′2

2 being the average positions (centers of mass) of the two dipoles consid-
ered. We want (13) to be true when the interval, defined with respect to the average dipole positions,
is space-like,

(t1 − t2)2 − (x̄1 − x̄2)2 ≤ 0. (14)

Equations (13, 14) are however generically equivalent to

[φ(t, x̄), φ(t, ȳ)] = 0, ~x 6= ~y, (15)

provided one can apply a boost along x to render equal the two times appearing in Eq. (13).
This requires the (1 + 1)-dimensional dipole theory to be invariant under boosts in the x-direction

(a fact completely overlooked in the literature, which claims that the only invariance left after NC is
imposed is a product of O(2) for the NC part and of the Lorentz group, e.g. SO(1, 1), for the rest).
The invariance follows from the form of the classical Lagrangian for dipoles,

2L = (∂tφ)2 − (∂x̄φ)2 − [(θ−1∆x)2 + m2]φ2 − 2V (φ). (16)

Above, V (φ) is the potential for the field, x̄ generically denotes the average position of a dipole, x+x′
2 ,

whereas ∆x denotes its span, x − x′. The only thing to prove is the invariance of the third term in
the RHS. which immediately follows from the tensorial character of the inverse of θ = θxy ∼ xy and
the usual Lorentz transformation of ∆x. At the quantum level one has no reason to worry about an
anomaly, since the integration measure in the path integral is invariant. In consequence, Eqs. (13, 14)
are tantamount, via a boost, to

eiH′t[φ(0, x̄), φ(0, ȳ)]e−iH′t = 0 (17)

which is true at t = 0, since this is by definition the time at which the fields behave like free fields (H ′

denotes the interacting part of the Hamiltonian, including V , in the interaction representation). We
stress that the above causality argument works for a fully interacting theory.

Adding now the (passive) commutative coordinate z, we conclude that the correct criterion for
causality is

[φ(t1, x̄1, z1), φ(t2, x̄2, z2)] = 0, (t1 − t2)2 − (x̄1 − x̄2)2 − (z1 − z2)2 ≤ 0, (18)

and that it is satisfied in NC field theory.
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