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1 Introduction

Both inelastic and elastic two photon atomic processes allows to investigate the structure of atoms. We
mention Raman and anti-Raman scattering as inelastic processes when both final and initial states
are bounded states as well as Compton scattering when the final state of the electron belongs to
the continuum spectrum of the energy. A correct calculation of a Compton profile gives the right
electron momentum distribution in atom. Elastically scattered photons by bound electrons ( Rayleigh
scattering ) are used extensively for determining the composition and structure of materials. Due
to the development of high intensity X-ray and gamma-ray sources, Rayleigh scattering both above
and below the photoeffect threshold energy has become a standard tool for studying the structure
and properties of various materials involving intermediate and high atomic numbers. The Rayleigh
scattering is also of great interest for the investigation of scattering processes from the atomic ground
state nanometric powders, amorphous materials and dilute media , flames, ionized gases and plasma,
optical properties of fibers, and many other fields. We consider that the photon energy range of interest
lies from a few hundred eV up to 300 KeV and in this energy range scattering must be described with
quantum theory. When investigating the interactions of the electromagnetic field with the inner shells
electrons of high Z atoms, the incident photons energies are in the X and gamma-ray domain, so
that accurate analytical formulae are needed for this range of energies. The atomic model considers
that independent atomic electrons interact with a single screened central potential resulting from the
charge distribution of the nucleus and all the atomic electrons.

Elastic scattering of photons by the atom is considered as elastic scattering by the bound electrons
and nucleus which in the final state remain bound. Because the energy of the scattered photon is the
same as that of the incident photon, it is impossible to distinguish which of the atomic component
is responsible for the scattering. Hence, in order to obtain the scattering cross section we must sum
the scattering amplitudes of the atomic components ( electrons and nucleus ) and only then squares.
That means that we have to consider a coherent sum of the amplitudes. By Rayleigh scattering we
mean the contribution made to elastic scattering by the atomic electrons-an atomic process. Elastic
scattering by the nucleus includes nuclear Thomson scattering (scattering by the charge of the nucleus),
Delbruck scattering (a radiative correction to nuclear Thomson scattering and a nonclassical, nonlinear
interaction of the electromagnetic fields), and nuclear resonance scattering.

In the nonrelativistic approach, a two photons process in the lowest orders of the perturbation
theory is described by the Kramers-Heisenberg-Waller (KHW) matrix element [1,2]
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where
→
k1 and

→
k2 are the momentum vectors of the incident and scattered photon and

→
s1 and

→
s2 are the

polarization vectors of the incident and scattered photons. In the KHW matrix element Ω1 = ω1 +IB,
Ω2 = −ω2+IB , where ω1 and ω2 stand for the energy of the incoming and scattered photon respectively,
and IB is the ionization energy of the electron. In the equation (1.1) the states |f〉 and |i〉 are solutions
of the Schrdinger equation with Coulomb field. The sum over the complete set of intermediate states
may be replaced by the coulombian nonrelativistic Green function defined as

GNR
0 (

→
r2,

→
r1; Ω) = S

n

un(
→
r1)u

∗
n(

→
r2)

En − Ω
, (1.2)

or

(H0 − Ω) GNR
0

(

→
r2,

→
r1; Ω

)

= δ
(

→
r2 −

→
r1

)

with H0 =
~P 2

2m
− α Z

r (1.3)

It may be shown that the nonrelativistic coulombian Green function depends on two parameters,

X2 = −2mΩ, ReX > 0 andτ = αZm/X (1.4)

the relationships between parameters being given by nonrelativistic kinematics.

The first term of the equation (1.1) is the nonrelativistic form factor coming from the
→
A 2 term of

the Hamiltonian for the interaction of the radiation field with an electron

HNR
int = e2

→
A 2

2m2 − e
m

→
A

→
P ,

while the matrix elements involving the coulombian Green function come from the linear term in the

potential
→
A from the operator HNR

int .
The exponential function present in the KHW matrix element gives the multipole and retardation

contributions. We notice that by retarded contributions is meant the evaluation of multipoles beyond
their long wavelength limit. Some time ago Costescu et al [3] have shown in the case of Rayleigh
scattering, that multipole and retardation corrections are important and significantly larger than rel-
ativistic correction for photon energies ω above the K-shell photo-effect threshold IB , but far enough
from spurious poles which occur in the nonrelativistic fully retarded amplitude. For photon ener-
gies above 50 keV the contributions from spurious poles near the electron-positron pair production
threshold [3, 4] in the Rayleigh nonrelativistic retarded amplitude, degrade the predicted numerical
results, largely overestimating the elastic photon scattering and photoeffect cross-sections. The effects
of these poles are known in photoeffect (which is related to the imaginary part of the forward Rayleigh
scattering amplitude by the optical theorem).

The nonrelativistic result including all multipoles and retardation was obtained by Fischer [5]. It
may be written

σph =
32π2

3α
r2
0 (α Z)6

(m

ω

)4 e−2|τ1|χ(kNR,Z)

1 − e−2π|τ1|

1
[

(1 − ω/2m)2 + α2Z2
]2 (1.5)

where
χ = arctan

2(k+1)1/2

2−k+(kαZ/2)2

It is obvious that Fischer’s cross-section presents spurious poles located at ω = 2m ± i2αZm.
The poles near the pair production threshold in this nonrelativistic retarded result cause substantial

departures from the nonretarded dipole result at high energies, where the nonretarded dipole result
is known to agree with calculations including retardation and relativity, implying a cancelation of
these poles by relativistic contributions. This observation applies to both screened and Coulombic
calculations of the total photoeffect cross section.

Recently, it has been proven [6] that in the case of Compton scattering on K-shell bound electrons
the nonrelativistic KHW matrix element leads to inadequate expressions for the nonrelativistic Comp-
ton amplitudes when the sum over the complete set of positive-energy intermediate states is replaced
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Figure 1: Feynman diagrams for the second order amplitudes of the two photon scattering.

by the integral representation of the nonrelativistic coulombian Green function with the nonrelativistic
parameters X and τ defined in (1.4). Indeed, doing so one omits the relativistic kinematics from the
very beginning of the analytical calculation, i.e. some important relativistic kinematics terms in ω2 ,
which would in fact exactly cancel some terms due to multipoles, are lost. This is why the spurious
kinematics poles occur in the KHW amplitudes for any two-photon process.

In the case of Compton scattering of photons on bound electrons, the nonrelativistic retarded
amplitude has even more spurious singularities than Rayleigh amplitude because there are two particles
whose energies may change continuously in the final state. The nonrelativistic kinematics gives rise
to extra spurious poles and even a spurious cut in the complex plane of the final photon energy ω2

occurs if ω1 > m/2 + IB , as we will show. All these non-physical singularities are displayed by the
nonrelativistic retarded amplitude obtained long time ago in the case of Compton scattering from
K-shell electrons. Gavrila’s results include the contribution of all multipoles but it could be used
only in the dipole approximation, its usefulness being severely limited by the spurious singularities
influencing the results even at small energies.

The right way to obtain the nonrelativistic amplitudes for a two photon atomic process is to
consider the second order S-matrix element involving the sum over the complete set of coulombian
Dirac intermediate states |n〉 of positive and negative energies En , and then replace this sum with the
coulombian Green function of Dirac equation given by Hostler and Pratt [8], [9]. In this way, one takes
into account the relativistic kinematics when performing the integrals involved in the matrix element.
Only after performing all the needed integrals, one should consider the nonrelativistic limit of the
second order S-matrix elements obtaining the right nonrelativistic amplitudes without any spurious
singularity. Thus, the nonrelativistic limit of both the real and imaginary part of Rayleigh amplitudes
is correctly obtained.

2 The Second order S-Matrix Element for Two-Photon Processes

There are two Feynman diagrams for the second order amplitudes of a two photon scattering process
(fig 1). For sake of simplicity let us consider the ground state of energy E0 = γm as the initial state
of the atomic electron In a relativistic calculation, the matrix element is given by the expression

Mif = Mif (Ω1) + Mif (Ω2), (2.1)

where
Ω1 = ω1 + E0 + iε, Ω2 = −ω2 + E0 + iε, γ = (1 − α2Z2)

1

2 ,
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and

Mif (Ω1) = −m lim
ε→0

S
n

〈f |e−i
→
k2

→
r2(~α~s2)|n〉 〈n| e

i
→
k1

→
r1(~α~s1)|i〉

En − (ω1 + E0 + iε)
, (2.2)

Mif (Ω2) = −m lim
ε→0

S
n

〈f |ei
→
k1

→
r2(~α~s1)|n〉 〈n| e

−i
→
k2

→
r1(~α~s2)|i〉

En − (E0 − ω2 − iε)
. (2.3)

Here, E1 and Ef are the energies of the K-shell and final electrons, respectively; ωj,
→
k
j
,
→
s
j
(j = 1, 2)

are the energies, momentum and polarization vectors of the incident and final photons respectively,
while |f〉 and |i〉 denote Dirac spinors for the final and initial states of the electron in the nucleus
Coulomb field. The sum over the complete set of intermediate states |n〉 involves the contributions of
both positive and negative frequencies. The energies of the incident and scattered photons are ω1 and
ω2 respectively. The operator

→
α

→
s is expressed in terms of the three usual 4x4 Dirac matrices. The

arbitrary small quantity ε > 0 allows avoiding the singularities when En ≈ ω1 +E0 or En ≈ −ω2 +E0

2.1 Analytic properties of the scattering amplitudes

Inspecting the denominator of the amplitude Mif (Ω1) we notice that for any positive frequencies we
have En+ ≥ E0, thus inelastic resonant Raman scattering occurs for ω1 = En+ − E0 if En+ ≤ m,
while either the photoeffect or the inelastic Compton scattering occur for ω1 = En+ − E0 ifEn+ ≥ m,
when the final electron state belongs to the continuum spectrum. In the complex plane of the energy
ω1 , there are simple poles corresponding to resonant Raman and a cut beginning from the Compton
threshold energy ωth = m − E0. Because the initial electron was considered in the ground state, for
the positive frequencies the denominator En −Ω2 of the term Mif (Ω2) never vanishes. For En+ = E0

the denominator gets its minimum value ω2, thus no resonant poles can occur in the term Mif (Ω2)
but the infrared divergence observed by Gavrila [7] is present. For negative frequencies En− ≤ −m
the denominator En− − Ω1 never vanishes and the Mif (Ω1) amplitude has no singularities. The
denominator En− −Ω2 vanishes for any ω2 ≥ m+E0, thus the term M(Ω2) has a cut beginning above
the pair-production threshold energy with the created electron in the K-shell ω1 = ωpp+E0 = m+2E0.

When the initial state of energy Ei is not the ground state, the amplitude Mif (Ω1) has the analytic
properties. For sake of simplicity let’s consider the initial electron in the ground state

-For any positive frequencies En+ ≥ Ei so that inelastic resonant Raman scattering occurs for
ω1 = En+ − Ei if En+ < m

-If En+ ≥ m the final electron state belongs to the continuum spectrum for ω1 = En+ − Ei either
the photoeffect or Compton scattering occurs -For En− ≤ −m the denominator En− − Ω1 < 0, the
term has no poles. Simple poles correspond to resonant Raman, a cut begins from the threshold

About the amplitude Mif (Ω2) we have to keep in mind:
-If En+ > Ei, the denominator gets minimum value so no resonant poles can occur, but an infrared

divergence is present when ω2 → 0
-For negative frequencies En− ≤ m the denominator En− − Ω2 = 0 for any ω2 ≥ m + Ei thus the

term Mif (Ω2) has a cut beginning from the pair-production threshold energy ω1 = ωpp+Ei = m+2Ei,
with the created electron in the initial state.

In the Figure 2 are displayed physical singularities of the two-photon amplitude.

2.2 Coulombian Green function method

The sum over all intermediate states can be replaced by introducing the Green function of the Dirac
equation with Coulombian field G(

→
r2,

→
r1; Ω)

G(
→
r2,

→
r1; Ω) = S

n

|n〉 〈n|

En − Ω
(2.4)
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Figure 2: Physical singularities of the amplitudes in the photon energy complex plane

where the sum over all intermediate states |n〉 is over the complete set of coulombian Dirac spinors
i.e. a sum over all positive and negative energies.

Mfi(Ω1) = −m 〈f |e−i
→
k2

→
r2(~α~s2)G(

→
r2,

→
r1; Ω1) ei

→
k1

→
r1(~α~s1)|i〉 (2.5)

Mfi(Ω2) = −m 〈f |ei
→
k1

→
r2(~α~s1)G(

→
r2,

→
r1; Ω2) e−i

→
k2

→
r1(~α~s2)|i〉 (2.6)

where the final state |f〉 is described by the Dirac spinor u
(−)
f (

→
r2) belonging to the continuum spectrum

with incoming asymptotic spherical waves. The Coulomb Green function for Dirac equation was given
by Hostler and Pratt [1963] and Hostler [10]; it can be expressed in the form

G(
→
r2,

→
r1; Ω) =

1

2m

(

i
→
α ∇2 − βm −

αZ

r2
− Ω

)[

I +
1

2Ω

→
α

(

→
P2 +

→
P1

)]

G0(
→
r2,

→
r1; Ω) (2.7)

where G(
→
r2,

→
r1; Ω) is the Green function of the Schrodinger type equation*:

(

−
1

2m
∆2 −

αZΩ

m

1

r2
+

m2 − Ω2

2m

)

G0(
→
r2,

→
r1; Ω) = −δ(

→
r2 −

→
r1) (2.8)

or
(

HSchr
0 +

X2

2m

)

G0(
→
r2,

→
r1; Ω) = −δ(

→
r2 −

→
r1) (2.9)

with

X2 = m2 − Ω2 and HSchr
0 (

→
r2,Ω) = −

1

2m
∆2 −

αZΩ

m

1

r2
(2.10)

As Hostler pointed out it follows that the second term in the right parenthesis of eq., representing
the first iteration of the ”main” term G0(

→
r2,

→
r1; Ω1), describes the spin contributions to the electronic

propagator, while the function G0(
→
r2,

→
r1; Ω1), itself contains all relativistic kinematics effects via the

”changed parameters” X2 = m2 − Ω2 instead the nonrelativistic parameter X2
NR = −2mΩ and α ZΩ

m
instead the nonrelativistic term αZ).

The first iteration term together with the ”main” term G0(
→
r2,

→
r1; Ω1), represents the Sommerfeld-

Maue approximation to the relativistic coulombian Green function. The propagator spin contributions,
as given by the first iterative term to the ”main” term in a large range of energies. Indeed, in the case

of Rayleigh scattering the contribution to the matrix elements Mfi(Ω) of the operator
→
α

→
P

2Ω are small
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either for photon energies up to several times the photoeffect threshold, where the full nonrelativistic
approach gives excellent predictions, or for large photon energies as was already proved. Taking into
account that

(

u
(−)
f (

→
r2)

)+
(

→
α

→
P +βm −

αZ

r2
− Ef

)

= 0,

we get

Mfi (Ω1) = −
1

2

∫

d3r1

∫

d3r2u
+
f (~r2)

{[

~α~s2 (Ω1 − Ef ) + ~s2
~P2

]

ei(~k1~r1−~k2~r2)
}

(2.11)

[

I −
1

2Ω1

→
α

(

→
P1 +

→
P2

)]

G0(
→
r2,

→
r1; Ω1)

}

→
α

→
s1 ui(

→
r1)

The above expression may be written in the momentum space as

Mfi (Ω1) = −
1

2

∫

d3p1

∫

d3p2u
+
f (~r2)

{[

~α~s2 (Ω1 − Ef ) + ~s2
~P2

]

ei(~k1~r1−~k2~r2)
}

(2.12)

×

[

I +
1

2Ω1

→
α

(

→
p1 −

→
p2

)

]

G0(
→
p2,

→
p1; Ω1)

}

(

→
α

→
s1

)

ui(
→
r1)

and a similar expression for Mfi(Ω2) with ~k2 ↔ −~k1. The Coulombian Green function in momentum
space is given by integral representation due to Schwinger [9],

G0(
→
p2

→
p1; Ω) = −

mX3

2π2

(

ieiπτ

2 sin πτ

)

(0+)
∫

1

ρ−τ d

dρ
(2.13)











1 − ρ2

ρ

1
[

X2
(

→
p1 −

→
p2

)2
+

(

p2
1 + X2

) (

p2
2 + X2

)

(1 − ρ)2 /4ρ

]2











dρ

with

τ =
αZΩ

X
, X2 = m2 − Ω2

For any two photon atomic process the amplitudes involve a basic sixfold integral which was
calculated long time ago in connection with the elastic scattering of photons by the K-shell electrons.
The expression may be written in terms of the integral because the integral representation for the
Coulomb-Green function in momentum space G0(

→
p2

→
p1; Ω), the integral representation for the final

electron wave function in momentum space uf (
→
p ) and the initial bound electron wave function ui(

→
p )

lead to such a term. Indeed, the expressions we need for the amplitudes are obtained by Gavrila and
Costescu [10,11]

d

dρ

[(

1 − ρ2

ρ

)

J
(

X2;λ, µ
)

]

=
16π4

X2

1

c(Ω, ρ)
(2.14)

where

c(Ω, ρ) =
[

(X + λ)2 + k2
1

] [

(X + µ)2 + κ2
2

] [

1 − 2ρ s(Ω, µ,
→
κ2) + ρ2p(Ω, µ,

→
κ2)

]

(2.15)

with

s(Ω, µ,
→
κ2) =

(

λ2 + k2
1 − X2

) (

µ2 + κ2
2 − X2

)

+ 4

(

→
k1

→
κ2

)

X2

[

(X + λ)2 + k2
1

] [

(X + µ)2 + κ2
2

] ,
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p(Ω, µ,
→
κ2) =

[

(X − λ)2 + k2
1

] [

(X − µ)2 + κ2
2

]

[

(X + λ)2 + k2
1

] [

(X + µ)2 + κ2
2

] ,

Finally, all needed integrals over the variable ρ are of the kind

ie−iπa

2 sin πa

(0+)
∫

1

ρa−1

(1 − ρ s + ρ2p)b1 (1 − ρ s′ + ρ2p′)b3
dρ

with
a = n0 − τ, b1 = n1 − ν, b3 = n3 + ν

where n0, n1, n3 some specific natural numbers, and ν = αZΩ/ip if the final state belongs to contin-
uum spectrum (Compton scattering, two photon ionization). In the simpler case of a bound-bound
transition, ν = 0 and b3 = 0.

The coefficients

s(Ω1) = x(Ω1) + y(Ω1), s(Ω2) = x(Ω2) + y(Ω2), s
′(Ω1) = x′(Ω1) + y′(Ω1), s

′(Ω2) = x′(Ω2) + y′(Ω2),

p(Ω1) = x(Ω1)y(Ω1), p(Ω2) = x(Ω2)y(Ω2), p
′(Ω1) = x(Ω1)y(Ω1), p

′(Ω2) = x(Ω2)y(Ω2),

are cumbersome but known functions of the photon energy and scattering angle such integrals may
be performed observing that they are similar to the integral representation of the Lauricella functions

FD

(

a; b1, b2, b3, b4; c;x, y, x′, y′
)

(2.16)

= −
Γ(c)

Γ(a)Γ(c − a)

(

ie−iπa

2 sin πa

)

(0+)
∫

1

ρa−1(1 − ρ)c−a−1

(1 − ρ x)b1 (1 − ρ y)b2 (1 − ρ x′)b3 (1 − ρ y′)b4
dρ

Inspecting the above integral representation and the integrals we observe that each of them introduces
a Lauricella function with c = a + 1, b1 = b2, are cumbersome but known functions of the photon
energy and scattering angle where c and a are the last and the first parameters respectively:

ie−iπa

2 sin πa

(0+)
∫

1

ρa−1

(1 − ρ s + ρ2p)b1 (1 − ρ s′ + ρ2p′)b3
dρ (2.17)

=
ie−iπa

2 sin π a

(0+)
∫

1

ρa−1

(1 − ρ x)b1 (1 − ρ y)b1 (1 − ρ x′)b3 (1 − ρ y′)b3
dρ

Fortunately, the integrals that we meet have no cut between 0 and 1 so that the integral representation
of Lauricella functions becomes significantly simpler:

1

a
FD[a; b1, b1, b3, b3; a + 1;x(Ωj), y(Ωj), x

′(Ωj), y
′(Ωj)] (2.18)

=

1
∫

0

ρa−1

(1 − ρ x)b1 (1 − ρ y)b1 (1 − ρ x′)b3 (1 − ρ y′)b3
dρ

The above mentioned particularities c = a + 1, b1 = b2, b3 = b4 allows us to write all invariant
amplitudes with the minimum number of distinct Lauricella functions FD and to perform a fast and
accurate numerical calculation.

In the case of a bound-bound two photon transition, the amplitudes are expressed in terms of
Appell functions F1

F1 (a, b1, b2; c;x, y) =
Γ(c)

Γ(a)Γ(c − a)

(

ie−iπa

2 sin πa

)

(0+)
∫

1

ρa−1(1 − ρ)c−a−1

(1 − ρ x)b1 (1 − ρ y)b2
dρ
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Again we observe that c = a + 1, b2 = b1 so that the integral representation of Appell functions
becomes simpler

1

a
F1 (a, b1, b1; a + 1;x, y) =

1
∫

0

ρa−1

(1 − ρ x)b1 (1 − ρ y)b1
dρ (2.19)

For this particular values of the parameters, there are some useful recursion relationships which
allow to express the cross-section with only a few Lauricella functions in the case of Compton scattering
and Appel functions in the case of bound-bound tranzitions

The forward scattering amplitude of the elastic scattering gives via the optical theorem the total
cross-section for both atomic photo effect and pair production (with the final electron in K-shell):

σph =
4πm

αω
r2
0 |ImM (Ω1, ω, θ) = 0| ;

σpp =
4πm

αω
r2
0 |ImM (Ω2, ω, θ) = 0| ;

In the following we give the nonrelativistic limit of the Compton and Rayleigh scattering amplitudes
in the case of K-shell electrons as well as for atomic photoeffect (Costescu, Spanulescu, Stoica, [6] and
[12].

3 The Nonrelativistic Limit of the Two Photon Amplitude

The two-photon amplitude may be also written

Mfi = s1js2k [Πjk + Πjk (Ω1) + Πjk (Ω2)] , (3.1)

where we have dropped out the first iterative term containing spin terms, thus we do not consider
spin corrections to the electron propagator. Also, it is obvious that this approach is valid in the
nonrelativistic limit ω1 ∼ α2Z2m << m where there is no iterative term.

Taking into account that

(Ω − Ef ) G0(
→
r2

→
r1; Ω) = S

n+

(

−1 +
En+ − Ef

En+ − Ω

)

|n+〉 〈n+| (3.2)

= −δ
(

→
r2 −

→
r1

)

+
(

H0(
→
r2) − Ef

)

G0(
→
r2

→
r1; Ω)

and
(

→
α

→
s2

) (

→
α

→
s1

)

+
(

→
α

→
s1

) (

→
α

→
s2

)

= 2
(

→
s2

→
s1

)

· I

we get
s1js2kϑjk

∼= ϑ
→
s1

→
s2 +s1js2kϑjk

where

ϑ =

∫

R3

d3r
(

u
(−)
f (

→
r2)

)+
ei(

→
k2 −

→

k1)
→
r ui(

→
r ) = 〈f | ei(

→
k2 −

→

k1)
→
r |i〉

is the relativistic form factor.
Long time ago Hostler proved that it is possible to obtain the relativistic Coulomb continuum

states a limiting case of the physical Green’s function for Dirac equation both for positive and negative
frequency states and both for incoming and outgoing wave boundary conditions. According to the
Hostler result, in our case, to the iterated Green function

[

I +
1

2Ω

→
α

(

→
P2 +

→
P1

)]

G0(
→
r2

→
r1; Ω)
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corresponds the iterated Dirac wavespinor with asymptotic behavior given by a spherical incoming
wave

u
(−)
→
p µ

(
→
r ) =



I +

→
α

→
P2

2Ef



 u
(−)
→
p

(
→
r )uµ(

→
p )

where

u
(−)
→
p

(
→
r ) =

1

(2π)3/2
Γ (1 + i |ν|) e

π|ν|
2 ei

→
p

→
r

1F1

(

−i |ν| , 1; − i
(→

p
→
r + p r

))

(3.3)

and uµ(
→
p )ν c12 is a normalized Dirac spinor describing a free electron with momentum ~p and polar-

ization µ. The momentum p and the parameter are given by relativistic kinematics

p =
√

E2
f − m2, ν =

α ZEf

ip
(3.4)

and
Ef = m + ω2max − ω2

where

ω2max = ω1 − IB = ω1 − (1 − γ)m (3.5)

The dominant term u
(−)
→
p

(
→
r ) of the spinor u

(−)
→
p µ

(
→
r ) is the solution of the Schrdinger type equation

(

−
1

2m
∆ −

αZ

r
− Ef

)

u
(−)
→
p

(
→
r ) = 0 (3.6)

For any incoming photon energy ω1, in the hard photon region of Compton spectrum there is an
energy range where we may consider that the final electron moves nonrelativistically, so we should
neglect the spin term of the spinor. In accordance with dropping out the Sommerfeld-Maue spin
corrections to the propagator, we may expect that this approach may be considerd valid for the most
part of the Compton spectrum. For nonrelativistic energy values of the incident photon ω1 << m,
this is right for the whole Compton spectrum.

We observe that
(

HSchr
0 (

→
r2,Ω) − Ef

)

u
(−)
→
p

(
→
r2) = 0 if ω1 ≤ αZm so that the term ϑjk in equation

vanishes. Indeed, if ω1 ≤ αZm both for Ω1 = γ m + ω1 and Ω2 = γ m − ω2 we may put αZ Ω
mr

∼= αZ
r ,

because the neglected term α2 Z2

r is in the same αZ order as the terms which are involved in the
second iteration to the main term of the Green function and have already been neglected. The
equation becomes

s1js2kϑjk =
→
s1

→
s2 ϑ

where the final state in ϑ is a Schrdinger type eigenfunction, involving relativistic kinematics. In order
to calculate the matrix element ϑ, we have to observe that the K-shell Dirac spinor ui(

→
r1) contains

the ”negative power” factor
(

Z r
a0

)γ−1
which gives rise to strong relativistic effects in the case of large

momentum transfers and high Z targets, when small r distances have a major contribution to the
matrix element of the process. These effects are increasing as the energy ω1 increases. However,

if ω1 < αZm we may consider that the photon momentum transfer
→
∆ =

→
k1 −

→
k2 is small for any

scattering angle θ, so that the matrix element value is given mainly by the r values close to the ion
Bohr radius a0

Z and
(

Zr

a0

)γ−1

= 1 + (1 − γ) ln

(

a0

Z

1

r

)

+ ... ∼= 1
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In the next figures we compare our numerical results predicted by our formulae with the full rela-
tivistic numerical calculations of Bergstrom, Suric, Pisk and Pratt [1993]. We compare the Compton
doubly differential cross-section

d2σ

dΩk2dω2
=

1

2

∫

Ωp

∑

→
s1,

→
s2

|M |2dΩ
ω2

ω1
r2
0 (3.7)

and also the singly differential cross-section which gives the Compton angular distribution

dσB

dΩk2
=

r2
0

2

∫

Ωp

ω2 max
∫

ωthr

∑

→
s1,

→
s2

|M |2dΩ dω 2 (3.8)

We also calculated the ratio dσB/dσfree between the singly differential cross section for a K-shell
bound electron, and the free electron singly differential cross-section given by the well known Klein-
Nishina formula [1929].

For numerically evaluating the cross-sections, the most time-expensive part is the calculation of the
Lauricella functions of D type, depending of six parameters and four variables, all complex, involved
in the expressions of the amplitudes. Among the various methods eligible for computing the higher
order transcendental functions, we tested two: series expansion and integral representation. The sec-
ond method proved to be more efficient and therefore we consistently used it in all our calculations.
Although the general integral representation of these functions may demand a large quantity of calcu-
lus, by appropriate using their actual characteristics, the computing speed can be greatly improved.
Thus, taking into account the normal integral representation of Lauricella D type function, one can
write these functions in the form:

1

a
FD

(

a; b1, b1, b2, b2; a + 1;x, y, x′, y′
)

=

1
∫

0

ρa−1

(1 − ρ s(Ωj) + ρ2 p(Ωj))
b1 (1 − ρ s′(Ωj) + ρ2 p′(Ωj))

b2
dρ(3.9)

Analogue, Appell functions are computed making use of the simple integral representation

1

a
F1 (a; b, b, a + 1;x, y) =

1
∫

0

ρa−1 1

(1 − ρs (Ω) + ρ2p (Ω))b
dρ (3.10)

which allow us to get the angular distribution of Rayleigh scattering.

4 Numerical Results and Conclusions

In the figures [3-5] we present the angular distribution predictions for Compton scattering by a K-shell
electron of the elements with Z=30, Z=50 and Z=79 which are all in good agreement with relativistic
numerical computations. We mention that comparing the predictions given by our nonrelativistic limit
for Compton scattering with relativistic numerical calculations performed with Cray supercomputers
by Bergstrom et al. (13) a good accuracy within 5 percent for photon energies up to 200 KeV. The
nonrelativistic limit gives with high accuracy the profile of Compton pick. It allows to obtain with
accuracy the momentum distribution of K-shell electrons even in the case of high Z atoms. Comparing
the predictions given by the nonrelativistic limit of the amplitude in the case of Rayleigh scattering by
the K-shell electrons with relativistic numerical results obtained by Kissel et al. [14]. The same good
concordance within 5 percent is found. An excellent agreement is also found in the case of K-shell
photo-effect comparing with relativistic numerical data obtained by Scofield [15] and Kissel et al. [14].
This concordance between the nonrelativistic limit and full numerical relativistic predictions shows
that spin effects are small for unexpectedly large energies. Also it is proven analiticaly and numericaly
that important cancelations occur between quadratic retardation and relativistic kinematics terms.
In a large range of not too high energies the linear terms in the photon energy due to retardation
represent the main correction to the dipole nonrelativistic result leading to excelent predictions.
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Figure 3: Doubly differential cross sections for the scattering of 145 KeV ohitins from a K-shell electron
of Zn (Z=30), for scattering angles θ = 0;π/3; 2π/3;π
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Figure 4: Doubly differential cross sections for the scattering of 145 KeV ohitins from a K-shell electron
of Sn (Z=50), for scattering angles θ = 0;π/3; 2π/3;π
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Figure 5: Doubly differential cross sections for the scattering of 145 KeV ohitins from a K-shell electron
of Au (Z=79), for scattering angles θ = 0;π/3; 2π/3;π
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Figure 6: Angular distribution of the Rayleigh scattering for a K-Shell electron of Sn(Z=50) at 320
KeV
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Figure 7: Angular distribution of the Rayleigh scattering for a K-Shell electron of Pb(Z=82) at 158
KeV
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Figure 8: Angular distribution of the Rayleigh scattering for a K-Shell electron of U(Z=92) at 145
KeV
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