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Abstract

Quantum theory of the gauge models in the causal approach leads to some cohomology problems.
We investigate these problems in detail for quantum electrodynamics and give a rigorous proof for
the renormalization of quantum electrodynamics.

1 Introduction

The general framework of perturbation theory consists in the construction of the chronological prod-
ucts such that Bogoliubov axioms are verified [1], [5], [4], [10]; for every set of Wick monomials
W1(x1), . . . , Wn(xn) acting in some Fock space H one associates the operator TW1,...,Wn(x1, . . . , xn);
all these expressions are in fact distribution-valued operators called chronological products. It will
be convenient to use another notation: T (W1(x1), . . . ,Wn(xn)). The construction of the chronological
products can be done recursively according to Epstein-Glaser prescription [5], [6] (which reduces the
induction procedure to a distribution splitting of some distributions with causal support) or according
to Stora prescription [12] (which reduces the renormalization procedure to the process of extension of
distributions). These products are not uniquely defined but there are some natural limitation on this
arbitrariness. If the arbitrariness does not grow with n we have a renormalizable theory.

Gauge theories describe particles of higher spin. Usually such theories are not renormalizable.
However, one can save renormalizablility using ghost fields. Such theories are defined in a Fock space
H with indefinite metric, generated by physical and un-physical fields (called ghost fields). One selects
the physical states assuming the existence of an operator Q called gauge charge which verifies Q2 = 0
and such that the physical Hilbert space is by definition Hphys ≡ Ker(Q)/Ran(Q). The space H is
endowed with a grading (usually called ghost number) and by construction the gauge charge is raising
the ghost number of a state. Moreover, the space of Wick monomials in H is also endowed with a
grading which follows by assigning a ghost number to every one of the free fields generating H. The
graded commutator dQ of the gauge charge with any operator A of fixed ghost number

dQA = [Q,A] (1.1)

is raising the ghost number by a unit. It means that dQ is a co-chain operator in the space of Wick
polynomials. From now on [·, ·] denotes the graded commutator.

A gauge theory assumes also that there exists a Wick polynomial of null ghost number T (x) called
the interaction Lagrangian such that

[Q,T ] = i∂µTµ (1.2)

for some other Wick polynomials Tµ. This relation means that the expression T leaves invariant the
physical states, at least in the adiabatic limit. Indeed, if this is true we have:

T (f) Hphys ⊂ Hphys (1.3)
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up to terms which can be made as small as desired (making the test function f flatter and flatter). In
the case of quantum electrodynamics we also have:

[Q, Tµ] = 0 (1.4)

but in more general models we have a divergence in the right hand side, etc.
We can also use a compact notation T I where I can be I = ∅ or I = µ All these polynomials have

the same canonical dimension
ω(T I) = 4, ∀I (1.5)

and because the ghost number of T ≡ T ∅ is null, then we also have:

gh(T I) = |I|. (1.6)

We can write (1.2) and (1.4) in the compact form

dQT I = i
∂

∂xµ
T Iµ (1.7)

with the convention T I = 0, |I| ≥ 2. Now we can construct the chronological products

T I1,...,In(x1, . . . , xn) ≡ T (T I1(x1), . . . , T In(xn))

according to the recursive procedure. We say that the theory is gauge invariant in all orders of the
perturbation theory if the following set of identities generalizing (1.7):

dQT I1,...,In = i
n∑

l=1

(−1)sl
∂

∂xµ
l

T I1,...,Ilµ,...,In (1.8)

are true for all n ∈ N and all I1, . . . , In. Here we have defined

sl ≡
l−1∑

j=1

|I|j (1.9)

(see also [3]). In particular, the case I1 = . . . = In = ∅ it is sufficient for the gauge invariance of the
scattering matrix, at least in the adiabatic limit: we have the same argument as for relation (1.3).

Such identities can be usually broken by anomalies i.e. expressions of the type AI1,...,In which are
quasi-local and might appear in the right-hand side of the relation (1.8). These expressions verify
some consistency conditions - the so-called Wess-Zumino equations. One can use these equations in
the attempt to eliminate the anomalies by redefining the chronological products. All these operations
can be proved to be of cohomological nature.

If one can choose the chronological products such that gauge invariance is true then there is still
some freedom left for redefining them. To be able to decide if the theory is renormalizable one needs
the general form of such arbitrariness. Again, one can reduce the study of the arbitrariness to descent
equations of the type as (1.7).

Such type of cohomology problems have been extensively studied in the more popular approach to
quantum gauge theory based on functional methods (following from some path integration method).
In this setting the co-chain operator is non-linear and makes sense only for classical field theories. On
the contrary, in the causal approach the co-chain operator is linear so the cohomology problem makes
sense directly in the Hilbert space of the model. One needs however a classical field theory machinery
to analyze the descent equations more easily.

In this paper we want to give a general description of these methods for quantum electrodynamics.
In the next Section we give a rigorous definition for the quantum electrodynamics model with ghost
fields. Then in Section 3 we remind the axioms verified by the chronological products and consider
the particular case of gauge models. In Section 4 we determine the cohomology of the operator dQ.
In Section 5 we use this cohomology and we can prove gauge invariance of quantum electrodynamics
for all orders of perturbation theory.
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2 Quantum Electrodynamics

We consider a vector space H of Fock type generated (in the sense of Borchers theorem) by the vector
field vµ (with Bose statistics) and the scalar fields u, ũ (with Fermi statistics). The Fermi fields are
usually called ghost fields. We suppose that all these (quantum) fields are of null mass. Let Ω be the
vacuum state in H. In this vector space we can define a sesquilinear form < ·, · > in the following way:
the (non-zero) 2-point functions are by definition:

< Ω, vµ(x)vν(y)Ω >= i ηµν D
(+)
0 (x− y) · I,

< Ω, u(x)ũ(y)Ω >= −i D
(+)
0 (x− y) · I < Ω, ũ(x)u(y)Ω >= i D

(+)
0 (x− y) · I (2.1)

and the n-point functions are generated according to Wick theorem. Here ηµν is the Minkowski metrics
(with diagonal 1,−1,−1,−1) and D

(+)
0 is the positive frequency part of the Pauli-Villars distribution

D0 of null mass. To extend the sesquilinear form to H we define the conjugation by

v†µ = vµ, u† = u, ũ† = −ũ. (2.2)

Now we can define in H the operator Q according to the following formulas:

[Q, vµ] = i ∂µu, [Q,u] = 0, [Q, ũ] = −i ∂µvµ

QΩ = 0 (2.3)

where by [·, ·] we mean the graded commutator. One can prove that Q is well defined. Indeed, we
have the causal commutation relations

[vµ(x1), vν(x2)] = i ηµν D0(x1 − x2) · I, [u(x1), ũ(x2)] = −i D0(x1 − x2) · I (2.4)

and the other commutators are null. The operator Q should leave invariant these relations, in partic-
ular

[Q, [vµ(x1), ũ(x2)]] + cyclic permutations = 0 (2.5)

which is true according to (2.3). It is useful to introduce a grading in H as follows: every state which
is generated by an even (odd) number of ghost fields and an arbitrary number of vector fields is even
(resp. odd). We denote by |f | the grading of the state f . We notice that the operator Q raises
the ghost number of a state (of fixed ghost number) by an unit. The usefullness of this construction
follows from:

Theorem 2.1 The operator Q verifies Q2 = 0. The factor space Ker(Q)/Ran(Q) is isomorphic to
the Fock space of particles of zero mass and helicity 1 (photons).

Proof: (i) The fact that Q squares to zero follows easily from (2.3): the operator Q2 = 0 commutes
with all field operators and gives zero when acting on the vacuum.

(ii) The generic form of a state Ψ ∈ H(1) ⊂ H from the one-particle Hilbert subspace is

Ψ =
[∫

fµ(x)vµ(x) +
∫

g1(x)u(x) +
∫

g2(x)ũ(x)
]

Ω (2.6)

with test functions fµ, g1, g2 verifying the wave equation equation. We impose the condition Ψ ∈
Ker(Q) ⇐⇒ QΨ = 0; we obtain ∂µfµ = 0 and g2 = 0 i.e. the generic element Ψ ∈ H(1)∩Ker(Q)
is

Ψ =
[∫

fµ(x)vµ(x) +
∫

g(x)u(x)
]

Ω (2.7)

with g arbitrary and fµ constrained by the transversality condition ∂µfµ = 0; so the elements of H(1)∩
Ker(Q) are in one-one correspondence with couples of test functions (fµ, g) with the transversality
condition on the first entry. Now, a generic element Ψ′ ∈ H(1) ∩Ran(Q) has the form

Ψ′ = QΦ =
[∫

∂µg′(x)vµ(x)−
∫

∂µf ′µ(x)u(x)
]

Ω (2.8)
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so if Ψ ∈ H(1) ∩ Ker(Q) is indexed by the couple (fµ, g) then Ψ + Ψ′ is indexed by the couple
(fµ + ∂µg′, g − ∂µf ′µ). If we take f ′µ conveniently we can make g = 0. We introduce the equivalence

relation f
(1)
µ ∼ f

(2)
µ ⇐⇒ f

(1)
µ − f

(2)
µ = ∂µg′ and it follows that the equivalence classes from (H(1) ∩

Ker(Q))/(H(1)∩Ran(Q)) are indexed by equivalence classes of wave functions [fµ]; it remains to prove
that the sesquilinear form < ·, · > induces a positively defined form on (H(1)∩Ker(Q))/(H(1)∩Ran(Q))
and we have obtained the usual one-particle Hilbert space for the photon.

(iii) We go now to the 2-particle space. We borrow an argument from the proof of Künneth formula
[2]. Any 2-particle state is generated by states of the form:

Ψ =
n∑

j=1

fj ⊗ gj (2.9)

with fj , gj one-particle states. We impose the condition Ψ ∈ Ker(Q) and observe that it is sufficient
to take fj , gj states of fixed ghost number. Moreover, we can take fj such that their span does not
intersect Ran(Q). Indeed if we have constants βj not all null such that

∑n
j=1 βj fj ∈ Ran(Q) then by a

redefinition of the vectors fj we can arrange such that f1 =
∑n

j=2 β′j fj +Qh. We substitute this in the
formula for Ψ and get: Ψ =

∑n
j=2 fj ⊗ (β′jg1 + gj) + Q(h⊗ g1)− (−1)|h| h⊗Qg1 so if we eliminate the

co-boundary we can replace the state Ψ by an equivalent one in which f1 → h. In this way we replace
the expression (2.9) by an equivalent expression for which

∑n
j=1 |fj | decreases by an unit. Recursively

we obtain another expression (2.9) modulo Ran(Q) for which Span (fj)n
j=1 ∩ Ran(Q) = {0}. Now

the condition QΨ = 0 writes
∑n

j=1(Qfj ⊗ gj + (−1)|fj | fj ⊗Qgj) = 0 and it easily follows that both
sums must be separately null i.e. we must have Qgj = 0 and Qfj = 0 for all j = 1, . . . , n. It means
that we have the canonical isomorphism (H(2)∩Ker(Q))/(H(2)∩Ran(Q)) ∼= (H(1)∩Ker(Q))/(H(1)∩
Ran(Q))⊗ (H(1) ∩Ker(Q))/(H(1) ∩Ran(Q)).

Now we can proceed by induction to the general n-particle states. ¥
We see that the condition [Q, T ] = i ∂µTµ means that the expression T leaves invariant the physical

Hilbert space (at least in the adiabatic limit).
We now consider that the Fock space is generated by a Dirac field ψ of mass m and Fermi statistics.

We must supplement (2.1) by

< Ω, ψ(x)ψ̄(y)Ω >= −i S(+)
m (x− y) · I, < Ω, ψ̄(x)ψ(y)Ω >= −i S(−)

m (y − x) · I (2.10)

where S
(±)
m are the corresponding positive (negative) frequency parts of the Dirac causal commutator

S
(±)
m ≡ i (γµ∂µ + m)D(±)

m .
Then we have the following result which describes the most general interaction for a zero-mass

vector particles and a Dirac field.

Theorem 2.2 Let T be a relative cocycle for dQ of canonical dimension ω(T ) ≤ 4 of ghost number
gh(T ) = 0 and at least tri-linear in the fields. Then T is (relatively) cohomologous to a non-trivial
co-cycle of the form:

T = jµ vµ (2.11)

where the expression jµ is bilinear in the Fermi matter fields:

jµ = eV ψγµψ + eA ψγµγ5ψ (2.12)

and we must have the conservation of the current

∂µjµ = 0; (2.13)

in particular we can have eA 6= 0 only if the mass of the Dirac field is null.
(ii) The relation dQT = i ∂µTµ is verified by:

Tµ = jµ u (2.14)

and we have dQTµ = 0.
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3 General Gauge Theories

We give here the essential ingredients of perturbation theory.

3.1 Bogoliubov Axioms

We first consider arbitrary self-adjoint Wick monomials W1, . . . , Wn. The chronological products
T (W1(x1), . . . , Wn(xn)) n = 1, 2, . . . are verifying the following set of axioms:

• Skew-symmetry in all arguments W1(x1), . . . , Wn(xn) :

T (. . . , Wi(xi),Wi+1(xi+1), . . . , ) = (−1)fifi+1T (. . . , Wi+1(xi+1),Wi(xi), . . .) (3.1)

where fi is the number of Fermi fields appearing in the Wick monomial Wi.

• Poincaré invariance: for all (a, A) ∈ inSL(2,C) we have:

Ua,AT (W1(x1), . . . , Wn(xn))U−1
a,A = T (A ·W1(A · x1 + a), . . . , A ·Wn(A · xn + a)); (3.2)

Sometimes it is possible to supplement this axiom by other invariance properties: space and/or
time inversion, charge conjugation invariance, global symmetry invariance with respect to some
internal symmetry group, supersymmetry, etc.

• Causality: if xi ≥ xj , ∀i ≤ k, j ≥ k + 1 then we have:

T (W1(x1), . . . ,Wn(xn)) = T (W1(x1), . . . ,Wk(xk)) T (Wk+1(xk+1), . . . , Wn(xn)); (3.3)

• Unitarity: We define the anti-chronological products according to

(−1)nT̄ (W1(x1), . . . ,Wn(xn)) ≡
n∑

r=1

(−1)r
∑

I1,...,Ir∈Part({1,...,n})
ε TI1(X1) · · ·TIr(Xr) (3.4)

where the we have used the notation:

T{i1,...,ik}(xi1 , . . . , xik) ≡ T (Wi1(xi1), . . . , Wik(xik)) (3.5)

and the sign ε counts the permutations of the Fermi factors. Then the unitarity axiom is:

T̄ (W1(x1), . . . , Wn(xn)) = T (W1(x1), . . . , Wn(xn))† (3.6)

• The “initial condition”
T (W (x)) = W (x). (3.7)

It can be proved that this system of axioms can be supplemented with

T (W1(x1), . . . , Wn(xn))

=
∑

ε < Ω, T (W ′
1(x1), . . . , W ′

n(xn))Ω > : W ′′
1 (x1), . . . , W ′′

n (xn) : (3.8)

where W ′
i and W ′′

i are Wick submonomials of Wi such that Wi =: W ′
iW

′′
i : the sign ε counts the

number of the permutation of the Fermi fields and Ω is the vacuum state. This is called the Wick
expansion property.

We can also include in the induction hypothesis a limitation on the order of singularity of the
vacuum averages of the chronological products associated to arbitrary Wick monomials W1, . . . , Wn;
explicitly:

ω(< Ω, TW1,...,Wn(X)Ω >) ≤
n∑

l=1

ω(Wl)− 4(n− 1) (3.9)
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where by ω(d) we mean the order of singularity of the (numerical) distribution d and by ω(W ) we
mean the canonical dimension of the Wick monomial W ; in particular this means that we have

T (W1(x1), . . . ,Wn(xn)) =
∑

g

tg(x1, . . . , xn) Wg(x1, . . . , xn) (3.10)

where Wg are Wick polynomials of fixed canonical dimension and tg are distributions with the order
of singularity bounded by the power counting theorem [5]:

ω(tg) + ω(Wg) ≤
n∑

j=1

ω(Wj)− 4(n− 1) (3.11)

and the sum over g is essentially a sum over Feynman graphs.
Up to now, we have defined the chronological products only for self-adjoint Wick monomials

W1, . . . , Wn but we can extend the definition for arbitrary Wick polynomials by linearity.
One can modify the chronological products without destroying the basic property of causality iff

one can make

T (W1(x1), . . . , Wn(xn)) → T (W1(x1), . . . , Wn(xn))
+RW1,...,Wn(x1, . . . , xn) (3.12)

where R are quasi-local expressions; by a quasi-local expression we mean an expression of the form

RW1,...,Wn(x1, . . . , xn) =
∑

g

[Pg(∂)δ(X)]Wg(x1, . . . , xn) (3.13)

with Pg monomials in the partial derivatives and Wg are Wick polynomials; here δ(X) is the n-
dimensional delta distribution δ(X) ≡ δ(x1 − xn) · · · δ(xn−1 − xn). Because of the delta function we
can consider that Pg is a monomial only in the derivatives with respect to, say x2, . . . , xn. If we want
to preserve (3.9) we impose the restriction

deg(Pg) + ω(Wg) ≤
n∑

j=1

ω(Wj)− 4(n− 1) (3.14)

and some other restrictions are following from the preservation of Lorentz covariance and unitarity.
The redefinitions of the type (3.12) are the so-called finite renormalizations. Let us note that this

arbitrariness, described by the number of independent coefficients of the polynomials Pg can grow
with n and in this case the theory is called non-renormalizable. This can happen if some of the
Wick monomials Wj , j = 1, . . . , n have canonical dimension greater than 4. If all the monomials have
canonical dimension less of equal to 4 then the arbitrariness is bounded independently of n and the
theory is called renormalizable.

It is not hard to prove that any finite renormalization can be rewritten in the form

R(x1, . . . , xn) = δ(X) W (x1) +
n∑

j=1

∂

∂xµ
l

Rl(X) (3.15)

where the expressions Rl(X) are also quasi-local. But it is clear that the sum in the above expression
is null in the adiabatic limit. This means that we can postulate that the finite renormalizations have
a much simpler form, namely

R(x1, . . . , xn) = δ(X) W (x1) (3.16)

where the Wick polynomial W is constrained by

ω(W ) ≤
n∑

j=1

ω(Wj)− 4(n− 1). (3.17)
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3.2 Gauge Theories and Anomalies

From now on we consider that we work in the four-dimensional Minkowski space and we have the
Wick polynomials T I such that the descent equations (1.7) are true and we also have

[T I(x), T J(y)] = 0 (3.18)

for x− y space-like i.e. these expressions causally commute in the graded sense.
The equation (1.7) are called a relative cohomology problem. The co-boundaries for this problem

are of the type
T I = dQBI + i ∂µBIµ. (3.19)

Next we construct the associated chronological products

T I1,...,In(x1, . . . , xn) = T (T I1(x1), . . . , T In(xn)).

Because of the previous assumption, it follows from the skew-symmetry axiom that we can choose
them such that we have the graded symmetry property:

T (. . . , T Ik(xk), T Ik+1(xk+1), . . .) = (−1)|Ik||Ik+1| T (. . . , T Ik+1(xk+1), T Ik(xk), . . .). (3.20)

We also have

gh(T I1,...,In) =
n∑

l=1

|Il|. (3.21)

In the case of a gauge theory there are renormalizations of the type (3.13) which call trivial, namely
those of the type

R...(X) = dQB...(X) + i
n∑

l=1

∂

∂xµ
l

Bl;...(X) (3.22)

Indeed, as it was remarked above, any co-boundary operator induces the null operator on the
physical Hilbert space. Also any total divergence gives a null contribution in the adiabatic limit.

We now write the gauge invariance condition (1.8) in a compact form. We consider the space Cn

of co-chains of the form CI1,...,In(X) which are distribution-valued operators in the Hilbert space with
antisymmetry in all indices from every Ij , (j = 1, . . . , n) and also verifying:

C ...,Ik,Ik+1,...(. . . , xk, xk+1, . . .) = (−1)|Ik||Ik+1| × C ...,Ik+1,Ik,...(. . . , xk+1, xk, . . .). (3.23)

Then we can define the operator δ : Cn −→ Cn+1 according to:

(δ C)I1,...,In ≡
n∑

l=1

(−1)sl
∂

∂xµ
l

CI1,...,Ilµ,...,In . (3.24)

It is easy to prove that we have:
δ2 = 0; (3.25)

we also note that δ commutes with dQ. One can now write the equation (1.8) in a more compact way:

dQT I1,...,In = iδT I1,...,In . (3.26)

We now determine the obstructions for the gauge invariance relations (3.26). These relations are
true for n = 1 according to (1.7). If we suppose that they are true up to order n − 1 then it follows
easily that in order n we must have:

dQT I1,...,In = iδT I1,...,In + AI1,...,In (3.27)
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where the expressions AI1,...,In(x1, . . . , xn) are quasi-local operators and are called anomalies. It is
clear that we have from (3.20) a similar symmetry for the anomalies: namely we have complete
antisymmetry in all indices from every Ij , (j = 1, . . . , n) and

A...,Ik,Ik+1,...(. . . , xk, xk+1, . . .) = (−1)|Ik||Ik+1| ×A...,Ik+1,Ik,...(. . . , xk+1, xk, . . .). (3.28)

i.e. AI1,...,In(x1, . . . , xn) are also co-chains. We also have

gh(AI1,...,In) =
n∑

l=1

|Il|+ 1. (3.29)

Let ω0 ≡ ω(T ); then one has:

AI1,...,In(X) = 0 iff
n∑

l=1

|Il| > n(ω0 − 4) + 4 (3.30)

We can write a more precise form for the anomalies, namely:

AI1,...,In(x1, . . . , xn) =
∑

k

∑

i1,...,ik>1

[∂i1
ρ1

. . . ∂ik
ρk

δ(X)]W I1,...,In;ρ1,...,ρk
i1,...,ik

(x1) (3.31)

and in this expression the Wick polynomials W I1,...,In;ρ1,...,ρk
i1,...,ik

are uniquely defined. Now from (3.11)
we have

ω(W I1,...,In;ρ1,...,ρk) ≤ n(ω0 − 4) + 5− k (3.32)

which gives a bound on k in the previous sum. We also have some consistency conditions on the
expressions verified by the anomalies. If one applies the operator dQ to (3.27) one obtains the so-
called Wess-Zumino consistency conditions:

dQAI1,...,In = −i δAI1,...,In . (3.33)

Let us note that we can suppose, as for the finite renormalizations - see (3.16) that all anomalies
which are total divergences are trivial because they spoil gauge invariance with terms which can be
made as small as one wished, i.e. we can take the form:

A(x1, . . . , xn) = δ(X) W (x1). (3.34)

It is however interesting that in some cases one can prove that the anomalies can be put in this form
by suitable redefinitions of the chronological products. This is the case of quantum electrodynamics
which we will analyze in the next Sections.

Suppose now that we have fixed the gauge invariance (3.26) and we investigate the renormalizability
issue i.e. we make the redefinitions

T (T I1(x1), . . . , T In(xn)) → T (T I1(x1), . . . , T In(xn)) + RI1,...,In(x1, . . . , xn) (3.35)

where R are quasi-local expressions. As before we have

R...,Ik,Ik+1,...(. . . , xk, xk+1, . . .) = (−1)|Ik||Ik+1| ×R...,Ik+1,Ik,...(. . . , xk+1, xk, . . .). (3.36)

We also have

gh(RI1,...,In) =
n∑

l=1

|Il|. (3.37)

and

RI1,...,In = 0,
n∑

l=1

|Il| > n(ω0 − 1) + 4. (3.38)
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If we want to preserve (1.8) it is clear that the quasi-local operators RI1,...,In should also verify

dQRI1,...,In = i δRI1,...,In (3.39)

i.e. equations of the type (3.33). In this case we note that we have more structure; according to the
previous discussion we can impose the structure (3.13):

RI1,...,In(x1, . . . , xn) = δ(X) W I1,...,In(x1) (3.40)

and we obviously have:

gh(W I1,...,In) =
n∑

l=1

|Il| (3.41)

and

W I1,...,In = 0,
n∑

l=1

|Il| > n(ω0 − 1) + 4. (3.42)

From (3.39) we obtain after some computations that there are Wick polynomials RI such that

W I1,...,In = (−1)s RI1∪...∪In . (3.43)

where
s ≡

∑

k<l≤n

|Ik||Il|. (3.44)

Moreover, we have
gh(RI) = |I| (3.45)

and
RI = 0, |I| > n(ω0 − 1) + 4. (3.46)

Finally, the following descent equations are true:

dQRI = i ∂µRIµ (3.47)

and have obtained another relative cohomology problem similar to (1.7). The relative co-boundaries
of this problem correspond to the relative co-boundaries from (3.12).

4 The Cohomology of the Operator dQ

The cohomology of the operator dQ can be reformulated in the language of classical field theory
(with Grassmann variables) paying attention to the fact that we are on the mass shell because the
Epstein-Glaser construction is done from the very beginning in a Fock space of some free particles.

From the preceding Section we have the physical justification for solving a cohomology problem
namely to determine the cohomology of the operator dQ = [Q, ·] induced by Q in the space of Wick
polynomials. We consider that the (classical) fields are vµ, u, ũ of null mass and we consider the set
P of polynomials in these fields and their derivatives. We note that on P we have a natural grading.
We introduce by convenience the notation:

B ≡ dµvµ (4.1)

and define the graded derivation dQ on P according to

dQvµ = idµu, dQu = 0, dQũ = −i B

[dQ, dµ] = 0. (4.2)
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Then one can easily prove that d2
Q = 0 and the cohomology of this operator is isomorphic to the

cohomology of the preceding operator (denoted also by dQ) and acting in the space of Wick monomi-
als. The operator dQ raises the grading and the canonical dimension by an unit. To determine the
cohomology of dQ it is convenient to introduce the field strength

Fµν ≡ dµvν − dνvµ = vν;µ − vµ;ν (4.3)

and observe that

dQFµν = 0,

dνF
µν = dµB,

Fµν;ρ + Fνρ;µ + Fρµ;ν = 0; (4.4)

the last relation is called Bianchi identity. Next we prove that the tensor

F (0)
µν;ρ1,...,ρn

≡ Fµν;ρ1,...,ρn +
1

n + 2

n∑

l=1

[ηµρl
Bρ1,...,ρ̂l,...,ρn − (µ ↔ ν)] (4.5)

is traceless in all indices and the expressions F
(0)
µν;ρ also verify the Bianchi identities. Now we define

gµ1,...,µn ≡
1
n

n∑

l=1

vµl;µ1,...,µ̂l,...,µn (4.6)

which is the completely symmetric part of the derivative vµ1;µ2,...,µn and prove that

vµ1;µ2,...,µn = gµ1,...,µn +
1
n

n∑

l=2

dµ2 . . . d̂µl
. . . dµnFµlµ1 . (4.7)

Finally we define

g(0)
µ1,...,µn

≡ gµ1,...,µn −
2

n(2n + 1)

∑

1≤p<q≤n

ηµpµq Bµ1,...,µ̂p,...,µ̂q ,...,µn (4.8)

which is completely symmetric and traceless.
We will use repeatedly the Künneth theorem:

Theorem 4.1 Let P be a graded space of polynomials and d an operator verifying d2 = 0 and raising
the grading by an unit. Let us suppose that P is generated by two subspaces P1,P2 such that P1∩P2 =
{0} and dPj ⊂ Pj , j = 1, 2. We define by dj the restriction of d to Pj . Then there exists the canonical
isomorphism H(d) ∼= H(d1)×H(d2) of the associated cohomology spaces.

The proof goes in a similar way to the preceding theorem (see [2]). Now we can prove an important
result describing the cohomology of the operator dQ; we denote by ZQ and BQ the cocyles and the
co-boundaries of this operator.

Theorem 4.2 Let p ∈ ZQ. Then p is cohomologous to a polynomial in u and F
(0)
µν;ρ1,...,ρn . If we

factorize the space P0 ⊂ P of such polynomials to the Bianchi identities we obtain a space which is
isomorphic to the cohomology space HQ of dQ.

Proof: (i) The idea is to define conveniently two subspaces P1,P2 and apply Künneth theorem. First
we use on P new variables. We eliminate the variables vµ1;µ2,...,µn (n ≥ 2) in terms of gµ1,...,µn (n ≥ 2)
and Fµν;ρ1,...,ρn−2 using (4.7). Next we eliminate Fµν;ρ1,...,ρn−2 in terms of F

(0)
µν;ρ1,...,ρn−2 and Bρ1,...,ρn−2

using (4.5). Finally we eliminate gµ1,...,µn (n ≥ 2) in terms of g
(0)
µ1,...,µn (n ≥ 2) and Bµ1,...,µn−2 according

to (4.8).
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(ii) Now we can take in Künneth theorem P1 = P0 from the statement and P2 the subspace
generated by the variables Bµ1,...,µn (n ≥ 0), g

(0)
µ1,...,µn (n ≥ 2), ũµ1,...,µn (n ≥ 0), uµ1,...,µn(n > 0) and

vµ. We have dQP1 = {0} and

dQuµ1,...,µn = 0

dQg(0)
µ1,...,µn

= i uµ1,...,µn

dQũµ1,...,µn = −i Bµ1,...,µn

dQBµ1,...,µn = 0
dQvµ = iuµ (4.9)

so we meet the conditions of Künneth theorem. Let us define in P2 the graded derivation h by:

huµ = −i vµ

huµ1,...,µn = −i g(0)
µ1,...,µn

(n ≥ 2)
hBµ1,...,µn = i ũµ1,...,µn (n ≥ 0) (4.10)

and zero on the other variables from P2. It is easy to prove that h is well defined: the condition of
tracelessness is essential to avoid conflict with the equations of motion. Then one can prove that

[dQ, h] = Id (4.11)

on polynomials of degree one in the fields and because the left hand side is a derivation operator we
have

[dQ, h] = n · Id (4.12)

on polynomials of degree n in the fields. It means that h is a homotopy for dQ restricted to P2 so the
the corresponding cohomology is trivial: indeed, if p ∈ P2 is a cocycle of degree n in the fields then it
is a coboundary p = 1

ndQhp.
According to Künneth formula if p is an arbitrary cocycle from P it can be replaced by a coho-

mologous polynomial from P0; The description of HQ follows from P0 ∩ BQ = ∅ and this proves the
theorem. ¥

5 The Gauge Invariance of Quantum Electrodynamics in All Orders

In quantum electrodynamics we need only a particular form of (3.27) and (3.33) namely the case when
we have the canonical dimension ω0 = 4. In this case (3.30) becomes:

AI1,...,In(X) = 0 iff
n∑

l=1

|Il| > 4 (5.1)

and this means that only a finite number of the equations (3.27) can be anomalous. We have from
(3.27) the following anomalous gauge equations:

dQT (T (x1), . . . , T (xn)) = i
n∑

l=1

∂

∂xµ
l

T (T (x1), . . . , Tµ(xl), . . . , T (xn)) + A(X) (5.2)

dQT (Tµ(x1), T (x2), . . . , T (xn)) = −i
n∑

l=2

∂

∂xν
l

T (Tµ(x1), T (x2), . . . , T ν(xl), . . . , T (xn))

+Aµ(X) (5.3)
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dQT (Tµ(x1), T ν(x2), T (x3), . . . , T (xn))

= i
n∑

l=3

∂

∂xρ
l

T (Tµ(x1), T ν(x2), T (x3), . . . , T ρ(xl), . . . , T (xn)) + Aµν(X) (5.4)

dQT (Tµ(x1), T ν(x2), T ρ(x3), T (x4), . . . , T (xn))

= −i

n∑

l=4

∂

∂xσ
l

T (Tµ(x1), T ν(x2), T ρ(x3), T (x4), . . . , T σ(xl), . . . , T (xn))

+Aµνρ(X) (5.5)

dQT (Tµ(x1), T ν(x2), T ρ(x3), T σ(x4), . . . , T (xn))

= i
n∑

l=5

∂

∂xλ
l

T (Tµ(x1), T ν(x2), T ρ(x3), T σ(x4), T (x5), . . . , T λ(xl), . . . , T (xn))

+Aµνρσ(X) (5.6)

where we can assume, without losing generality, that:

Aµν(X) = 0, |X| = 1,

Aµνρ(X) = 0, |X| ≤ 2,

Aµνρσ(X) = 0, |X| ≤ 3. (5.7)

From (3.28), we get the following symmetry properties:

A(x1, . . . , xn) is symmetric in x1, . . . , xn; (5.8)

Aµ(x1, . . . , xn) is symmetric in x2, . . . , xn; (5.9)

Aµν(x1, . . . , xn) is symmetric in x3, . . . , xn; (5.10)

Aµνρ(x1, . . . , xn) is symmetric in x4, . . . , xn; (5.11)

Aµνρσ(x1, . . . , xn) is symmetric in x5, . . . , xn (5.12)

and we also have:
Aµν(x1, . . . , xn) = −Aνµ(x2, x1, x3, . . . , xn); (5.13)

Aµνρ(x1, . . . , xn) = −Aνµρ(x2, x1, x3, . . . , xn) = −Aµρν(x1, x3, x2, x4, . . . , xn); (5.14)

Aµνρσ(x1, . . . , xn) = −Aνµρσ(x2, x1, x3, . . . , xn)
= −Aµρνσ(x1, x3, x2, x4, . . . , xn) = −Aµνσρ(x1, x2, x4, x3, x5, . . . , xn). (5.15)

The Wess-Zumino consistency conditions are in this case:

dQA(x1, . . . , xn) = −i
n∑

l=1

∂

∂xµ
l

Aµ(xl, x1, . . . , x̂l, . . . , xn) (5.16)

dQAµ(x1, . . . , xn) = i
n∑

l=2

∂

∂xν
l

Aµν(x1, xl, x2, . . . , x̂l, . . . , xn) (5.17)

dQAµν(x1, . . . , xn) = −i

n∑

l=3

∂

∂xρ
l

Aµνρ(x1, x2, xl, x3, . . . , x̂l, . . . , xn) (5.18)

dQAµνρ(x1, . . . , xn) = i

n∑

l=4

∂

∂xρ
l

Aµνρσ(x1, x2, x3, xl, x4, . . . , x̂l, . . . , xn) (5.19)

dQAµνρσ(x1, . . . , xn) = 0. (5.20)

We recall that the generic form of the anomalies is given by (3.31). We propose to simplify this
expression using appropriate redefinitions of the chronological products.
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Theorem 5.1 One can redefine the chronological products such that

A(X) = δ(X) W (x1) AI = 0, I 6= 0 (5.21)

where the Wick polynomial W has the generic form:

W = c1 u + c2 u ψψ + c3 u ψγ5ψ + c4 u Fµν Fµν + c5 εµνρσ u Fµν F ρσ. (5.22)

Proof: (i) We start with Aµνρσ which has ghost number 5. From (3.31) we have

Aµνρσ(X) = δ(X) Wµνρσ(x1) (5.23)

and the equation (5.20) gives
dQ Wµνρσ = 0. (5.24)

We apply theorem 4.2 and it follows that

Wµνρσ = dQBµνρσ + Wµνρσ
0 (5.25)

where Wµνρσ
0 ∈ P0. But it is easy to prove that there are no such expressions in canonical dimension

and ghost number 5 so in fact Wµνρσ is a coboundary. It we redefine the chronological products (i.e.
we perform a finite renormalization):

T (Tµ(x1), T ν(x2), T ρ(x3), T σ(x4), . . . , T (xn)) −→
T (Tµ(x1), T ν(x2), T ρ(x3), T σ(x4), . . . , T (xn)) + δ(X) Bµνρσ(x1) (5.26)

then we make
Aµνρσ(X) = 0. (5.27)

(ii) Now we investigate Aµνρ which has ghost number 4. The Wess-Zumino equation (5.19) is now:

dQAµνρ(X) = 0 (5.28)

and we can proceed as above and eliminate this anomaly.
This goes in the same way for Aµν and Aµ so we are left only with the anomaly A in which only

the piece
A(X) = δ(X) W (x1) (5.29)

is non-trivial. From the condition dQW = 0 we have

W = dQB + W0 (5.30)

where W0 ∈ P0. The coboundary can be eliminated using a finite renormalization and the generic
form of W = W0 ∈ P0 is given in the statement. ¥

An important observation is the following one. Let us define the so-called charge conjugation
operator according to

Uc vµ U−1
c = −vµ, Uc u U−1

c = −u, Uc ũ U−1
c = −ũ,

Uc ψ U−1
c = −C γ0 ψ†,

UcΩ = 0 (5.31)

where C is the charge conjugation matrix. Then we can easily prove that we have

Uc T U−1
c = T, Uc Tµ U−1

c = Tµ. (5.32)

Then we have the main result:

Theorem 5.2 The chronological products can be chosen such that the theory is gauge invariant in all
orders of perturbation theory.

89



Proof: (i) First we can define the chronological products such that they are charge conjugation
invariant in all orders of perturbation theory by induction. We suppose that the assertion is true up
to order n− 1 i.e.

Uc T I1,...,Ik U−1
c = T I1,...,Ik , k < n.

If T I1,...,In do not verify this relation we simply replace:

T I1,...,In → 1
2

(T I1,...,In + Uc T I1,...,In U−1
c ). (5.33)

So we can suppose that we have

Uc T I1,...,Ik U−1
c = T I1,...,Ik , ∀n. (5.34)

(ii) Suppose now that the theory is gauge invariant up to order n− 1. Then in order n we might
have the anomalies AI1,...,Ik . From the preceding relation and (3.27) we now have

Uc AI1,...,Ik U−1
c = AI1,...,Ik , ∀n. (5.35)

Using the preceding theorem it follows:

Uc W U−1
c = W. (5.36)

If we substitute the generic expression (5.22) in the preceding relation we obtain W = 0 and this
proves gauge invariance in order n. ¥

We emphasize that the main property used in the proof was charge conjugation invariance. This
idea goes back to the so-called Furry theorem. In the similar way one can treat other models for
which a charge conjugation operator do exists e.g. scalar electrodynamis and SU(n) invariant models
without spontaneously broken symmetry.

6 Conclusions

The cohomological methods presented in this paper leads to the most simple understanding of quantum
gauge models in perturbation theory and extract completely the information from the consistency
Wess-Zumino equations. We have illustrate the methods for the case of quantum electrodynamics.
The same methods work for the case of general Yang-Mills models [11] and quantum gravity considered
as a perturbative theory of particles of helicity (spin) 2. However in these cases we do not have in
general charge conjugation invariance so the elimination of anomalies in all orders using some Furry
type argument is not possible. However a lot of interesting informations can be obtained from the
elimination of the anomalies in lower orders of the perturbation theory for which explicit computations
are possible.
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