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Abstract

The Gamow-Teller transition operator is written as a polynomial in the dipole proton-neutron
and quadrupole charge conserving QRPA boson operators, using the prescription of the boson
expansion technique. Then, the 2νββ process ending on the first 2+ state in the daughter nucleus
is allowed through one, two and three boson states describing the odd-odd intermediate nucleus.
The approach uses a single particle basis which is obtained by projecting out the good angular
momentum from an orthogonal set of deformed functions. The basis for mother and daughter
nuclei may have different deformations. The GT transition amplitude as well as the half lives were
calculated for eighteen transitions. Results are compared with the available data as well as with
the predictions obtained with other methods.
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1 Introduction

One of the most exciting subjects of nuclear physics is that of double beta decay. The interest
is generated by the fact that in order to describe quantitatively the decay rate one has to treat
consistently the neutrino properties as well as the nuclear structure features. The process may take
place in two distinct ways: a) by a 2νββ decay where the initial nuclear system, the mother nucleus,
is transformed in the final stable nuclear system, usually called the daughter nucleus, two electrons
and two anti-neutrinos; b) by the 0νββ process where the final state does not involve any neutrino.
The first process preserves the lepton number while the second one does not.

The latter decay mode is especially interesting since one hopes that its discovery might provide a
definite answer to the question whether the neutrino is a Majorana or a Dirac particle. I recall you
that the Dirac particle is different from its antiparticle while the Majorana particle coincides with the
corresponding antiparticle. The problem concerning the nature of neutrino is a long standing issue.
Indeed, even in 1955 Davis [1] had the idea to place in a reactor 37Cl. Inside reactor there are plenty
of neutrons resulting from fission processes. Part of these particle dezintegrate through the β process:

n→ p + e− + ν̃ (1.1)
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If ν̃ would be identical with ν then it produces the inverse reaction

ν +37 Cl→37 Ar + e− (1.2)

However the result of the experiment was negative, i.e no atom 37Ar has been recorded. Davis
concluded that neutrino is a Dirac particle. This experiment took place one year before the discovery
of CP violation [2, 3]. With the new knowledge of parity violation one has been realized that the
process can be forbidden also in the case the neutrino is a massless Majorana particle, due to the
helicity conservation. Indeed, if the 0νββ decay exists then the antineutrino emitted by the first
neutron should be absorbed by the second neutron at a latter time. The emitted antineutrino has
however a right helicity while the absorbed neutrino in the second process must have a left helicity.
Therefore the process is forbidden. Therefore the dilemma about whether neutrino is a Dirac or
Majorana particle still persists. We notice that the process would be allowed if some mechanisms of
flipping the helicity are active. Indeed, the massive neutrino could flip its helicity due to its interaction
with an electroweak right handed current.

Why such an old issue is still intensively studied nowadays? The reason is that some formalisms
forbid the process of 0νββ while other ones allow it[4, 5, 6]. Indeed, since the process does not preserve
the lepton number, it is forbidden by gauge theories like SU(5) and SU(2)×U(1). On the other hand
there are GUTs (Grand Unified Theories) which predict a right handed neutrino and therefore the
existence of the 0νββ process. Indeed, the GUT formalism based on SO(10) symmetry predicts a
family of 16 fermions presented in Table I. The first 4 fermions from the first row and e− constitute
a 5-dimensional representation of SU(5), the νc

R is a one dimensional while the remaining fermions
formed out of the quarks up and down with the colors yellow, red and blue belong to a 10-dimensional
representation of SU(5). In this model the neutrino has both a Dirac and a Majorana mass. The
mass is represented by a matrix which in the case of only one flavor is a 2× 2 matrix which yields by
diagonalization:

ν1 ≈ νL −
mD

mM
R

νR, m1 ≈
(mD)2

MM
R

,

ν2 ≈ νR +
mD

mM
R

νL, m2 = MM
R , (1.3)

The Dirac and the right Majorana mass are mD ≈ 1.MeV, mM
R ≥ 103GeV . From these data it

results m1 ≤ 1.eV . The weak point of this formalism is that there is no left-handed Majorana mass.
However it is shown how one generates Majorana neutrino masses by mixing a large Dirac neutrino
mass with an even larger Majorana neutrino mass terms.

The conclusion is that the GUT’s predict a mass for neutrino and a coupling to a right handed
field, i.e. a right handed neutrino νR. In this context one may assert that the study of the 0νββ decay
could confirm or reject the predictions of the GUT’s formalism. Actually this is the reason why the
issue of finding the nature of neutrino is considered to be of a paramount importance.

There are two sources for experimental information on ββ decay: a) the direct counting technique
and b) the geochemical technique. The laboratory counting experiments allow to separate the 2ν and
0ν modes. On the other hand the geochemical measurements determine the total abundance of the
final nucleus, giving therefore the total decay rate and a lower limit on the two modes partial life
times. Using these data and the nuclear matrix elements one may calculate the upper limits for both
the effective neutrino mass and the effective right handedness of its interaction.

The drawbacks of these predictions is that no reliable direct test for the nuclear matrix elements,
exists. Fortunately, similar nuclear matrix elements are involved also in calculations for the 2νββ
process for which plenty of data exist. Therefore, a good idea would be to use for 0νββ decay those
matrix elements which realistically describe the decay rate for the 2νββ process.
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To conclude, the 0νββ decay exhibits a double fold importance: a) provides information about the
neutrino nature b) yields important restrictions of GUT’s.

I shall restrict my considerations to the 2νββ decay. This process is interesting by its own, but
is very attractive because it supplies us with realistic matrix elements which can be used in studying
the neutrinoless double beta decay.

The contributions over several decades have been reviewed by many authors. [7, 8, 9, 10, 11, 12].
In what follows, I shall mention the features which have been treated by my group in a series of

publications.
Although none of the double beta emitters is a spherical nucleus most formalisms use a single

particle spherical basis.
In the middle of 90’s we treated the 2νββ process in a pnQRPA formalism using a projected

spherical single particle basis which resulted in having a unified description of the process for spherical
and deformed nuclei [13, 14]. Recently the single particle basis [15, 16] has been improved by accounting
for the volume conservation while the mean field is deformed [17, 18]. The improved basis has been
used for describing quantitatively the ground state to ground state double beta decay rates as well
as the corresponding half lives [19, 20]. The results were compared with the available data as well as
with the predictions of other formalisms. The manners in which the physical observable is influenced
by the nuclear deformations of mother and daughter nuclei are in detail commented. Two features
of the deformed basis are essential: a) the single particle energy levels do not exhibit any gap; b)
the pairing properties of the deformed system are different from those of spherical system. These two
aspects of the deformed nuclei affect the overlap matrix of the pnQRPA states of mother and daughter
nuclei. Moreover, considering the Gamow-Teller (GT) transition operator in the single particle-space
generated by the deformed mean-field, one obtains an inherent renormalization with respect to the
one acting in a spherical basis.

In Ref. [21] we studied the higher pnQRPA effects on the GT transition amplitude, by means of
the boson expansion technique for a spherical single particle basis. Considering higher order boson
expansion terms in the transition operator, significant corrections to the GT transition amplitude are
obtained especially when the strength of the two body particle-particle (pp) interaction approaches
its critical value where the lowest dipole energy is vanishing. As we showed in the quoted reference,
there are transitions which are forbidden at the pnQRPA level but allowed once the higher pnQRPA
corrections are included. An example of this type is the 2νββ decay leaving the daughter nucleus in a
collective excited state 2+. The electrons resulting in this process can be distinguished from the ones
associated to the ground to ground transition by measuring, in coincidence, the gamma rays due to
the transition 2+ → 0+ in the daughter nucleus [23].

As specified by the title, my talk will refer to the study the 2νββ decay 0+ → 2+, where 0+ is
the ground state of the emitter while 2+ is a single quadrupole phonon state describing the daughter
nucleus. The adopted procedure is the boson expansion method as formulated in our previous paper
[21], but using a projected spherical single particle basis. It is worth mentioning that despite the fact
the boson expansion approach has been widely used for two alike fermion operators, the procedure
has been extended for proton-neutron operators only in the beginning of 90’s [21] for spherical single
particle basis and recently for a deformed mean field [22].

Concluding, our formalism involves two basic ingredients: a) the boson expansion approach for the
Gamow-Teller transition operator. In this way the 2νββ decay 0+ → 2+, forbidden in the framework
of the pnQRPA formalism, becomes an allowed process; b) a projected spherical single particle basis.
Using such a basis one may unitarily treat the transitions of spherical and deformed nuclei. Moreover,
situations when the mother and daughter nuclei have different nuclear deformations could be accounted
for.
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2 The Gamow-Teller transition amplitude

2.1 The 2νββ decay 0+ → 0+

In our treatment the Fermi transitions, contributing about 20% to the total rate, and the “forbidden”
transitions are ignored, which is a reasonable approximation for the two neutrino double beta decay in
medium and heavy nuclei. Therefore we suppose that the Gamow-Teller transitions are dominant for
the above mentioned nuclei. If the energy carried by leptons in the intermediate state is approximated
by the sum of the rest energy of the emitted electron and half the Q-value of the ground to ground
double beta decay process

∆00E = mec
2 +

1

2
Q

(0→0)
ββ , (2.1)

the reciprocal value of the 2νββ half life can be factorized as:

T 2ν
1/2(0

+
i → 0+

f )−1 = G00|M (00)
GT |2, (2.2)

where G00 is the Fermi integral which characterizes the phase space of the process while the second
factor is the GT transition amplitude tude which, in the second order of perturbation theory, has the
expression:

M
(00)
GT =

√
3

∑

k,m

i〈0||β+||k,m〉i i〈k,m|k′,m′〉f f 〈k′,m′||β+||0+
1 〉f

Ek,m + ∆E1
. (2.3)

Here ∆E1 = ∆00E + E1+ , with E1+ standing for the experimental energy for the first 1+.
The two matrix elements involved in Eq.2.3 determine the single β− and β+ transition strengths,

respectively. These are shown in Figs. 1-4 for the nuclei treated in the works presented in the present
lecture.

Note that in order to obtain a large amplitude for the double beta transition is necessary that the
single beta transitions strength represented in the left and right columns achieve the maximum values
for the same pnQRPA energies. Note that due to the repulsive character of the ph interaction the β−

strength in the quasiparticle representation is pushed towards the higher energies when the pnQRPA
correlations are introduced.

2.2 The 2νββ decay 0+ → 2+

If the final state is the collective state 2+ characterizing the daughter nucleus and under the same ap-
proximations, i.e. neglecting the Fermi transitions and replacing the lepton energy of the intermediate
state by

∆02E = mec
2 +

1

2
Q

(0→2)
ββ , (2.4)

a similar expression for the process half-life is obtained:

T 2ν
1/2(0

+
i → 2+

f )−1 = G02|M (02)
GT |2, (2.5)

where G02 is the Fermi integral which characterizes the phase space of the process while the second
factor is the GT transition amplitude :

M
(02)
GT =

√
3

∑

k,m

i〈0||β+||k,m〉i i〈k,m|k′,m′〉f f 〈k′,m′||β+||2+
1 〉f

(Ek,m + ∆E2)3
. (2.6)

Here ∆E2 = ∆02E + E1+ , with E1+ standing for the experimental energy for the first state 1+.
Comparing the expressions 2.3 and 2.6 we notice some differences:i) the Fermi factors are different

since they depend on the Q -values of the processes as well as on the angular momentum of the
final state; ii) the denominator of the transition 0+ → 2+ has a cubic power while for the transition
ground to ground the denominator is linear in the energy of the intermediate state. iii) the final states
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Figure 1: The single β− (left column) and β+

(right column) transition strengths are plotted
as function of pnQRPA energies (continuous
curve) or of the dipole two quasiparticle ener-
gies (dashed line). The continuous curves have
been obtained by folding the data with a gaus-
sian od a width equal to 0.5MeV. The chosen
beta− and β+ emitters are 48Ca, 96Zr, 100Mo;
48Ti, 96Mo, 100Ru, respectively.
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Figure 2: The single β− (left column) and β+

(right column) transition strengths are plotted
as function of pnQRPA energies (continuous
curve) or of the dipole two quasiparticle ener-
gies (dashed line). The continuous curves have
been obtained by folding the data with a gaus-
sian od a width equal to 0.5MeV. The chosen
beta− and β+ emitters arer 104Ru, 110Pd, 116Cd;
104Pd, 110Cd, 116Sn, respectively.

characterizing the two processes are different. The low indices i and f accompanying the nuclear
states suggest that these states describe the initial and final nuclei respectively. The operator β+ is
the β− decay transition operator. Indeed, acting with this operator on the right state, describing the
ground state of the even-even mother nucleus (N,Z), i.e. i〈0|, one obtains a state characterizing the
neighboring odd-odd nucleus (N − 1, Z + 1). Its explicit expression will be given in Section ... If this
operator acts on the state staying at its right side plays the role of a β+ transition operator. Thus,
if that right state is the state |0〉f , characterizing the daughter nucleus (N − 2, Z + 2), the excited
state describes the intermediate odd-odd nucleus (N − 1, Z + 1). The two sets of states obtained by
exciting the mother and daughter nuclei respectively are not orthogonal onto each other. As a matter
of fact this feature explains the need of introducing the overlap matrix appearing at the numerator in
the transition amplitude.

Concluding, the transition amplitude involves two reduced matrix elements which are associated
with the beta− and β+ transitions of the mother and daughter nuclei respectively. Alternatively, the
second matrix element could be viewed as being associated to the β− decay of the intermediate odd-
odd nucleus to the final state describing the daughter nucleus. Therefore the double beta decay may
be conceived as consisting of two consecutive single β− transitions.

In Fig. 5 one sketches a particular double beta transition. Note that the first single beta transition
is virtual since the final state is an excited state with respect to the initial state. That means that the
life-time of such a state should be so that the uncertainty relation for the energy and time variables
be obeyed.

The task of the theoretical methods is to provide a description of the nuclear states characterizing
the initial, intermediate and final nuclei, respectively. If the adopted formalism involves the pairing
correlations then the two legs of the double beta transition are accompanied by products of u and v
coefficients defining the Bogoliubov-Valatin transformation. These factors are decisive for the relative
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Figure 3: THe same as in Fig. 1 but for 128Te, 130Te, 134Xe; 128Xe, 130Xe, 134Ba.

magnitude of the two matrix elements. Thus the first leg matrix element is large while the second
leg matrix element associated to the virtual β+ decay of the daughter nucleus is small. If the pairing
correlations are washed out the second matrix element is vanishing. Hence, the process of double beta
decay is forbidden within a spherical shell model calculation.

Calculations which yield transition rates for the ground to ground double beta transitions are
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Figure 4: The same for Fig. 1 but for 136Xe; 136Ba.
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Figure 5: One illustrates the double beta GT transitions 0+ → 0+ from 76Ge to 76Se via the interme-
diate odd-odd nucleus which is 76As. The coefficients V 2 (U2) are the occupation (non-occupation)
probability for the state specified by the set of quantum numbers mentioned generically by p and n.

based on pnQRPA (proton-neutron quasiparticle random phase approximation) formalism.
Here we shall present a pnQRPA formalism which uses a projected spherical single particle bases.

This basis allows us to describe in an unified fashion the decay properties of both spherical and
deformed nuclei. Within the pnQRPA approach the transition operator is linear in the proton-
neutron phonon operators. Due to this feature the only intermediate states which contribute to the
Gamow-Teller transition amplitude are the one phonon proton-neutron dipole states. However, such a
transition operator produces vanishing matrix elements for the second leg of the double beta transition.
Therefore the double beta decay 0+ → 2+ is forbidden within the pnQRPA approach. However, if we
add to the transition operator higher pnQRPA corrections the process will be allowed.

Summarizing, two ingredients are specific to the present approach:i) a projected spherical single
particle basis and ii) a boson expansion representation of the single beta transition operator. These
to original contributions to the present issue will be described in some details in Sections 3 and 4.

3 A projected spherical single particle basis

The single particle mean field is determined by a particle-core Hamiltonian:

H̃ = Hsm + Hcore −Mω2
0r

2
∑

λ=0,2

∑

−λ≤µ≤λ

α∗
λµYλµ, (3.1)

where Hsm denotes the spherical shell model Hamiltonian while Hcore is a harmonic quadrupole boson
(b+

µ ) Hamiltonian associated to a phenomenological core. The interaction of the two subsystems is ac-
counted for by the third term of the above equation, written in terms of the shape coordinates α00, α2µ.
The quadrupole shape coordinates and the corresponding momenta are related to the quadrupole bo-
son operators by the canonical transformation:

α2µ =
1

k
√

2
(b†2µ + (−)µb2,−µ), π2µ =

ik√
2
((−)µb†2,−µ − b2µ), (3.2)
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where k is an arbitrary C number. The monopole shape coordinate is determined from the volume
conservation condition. In the quantized form, the result is:

α00 =
1

2k2
√

π

[

5 +
∑

µ

(2b†µbµ + (b†µb†−µ + b−µbµ)(−)µ)

]

. (3.3)

Averaging H̃ on the eigenstates of Hsm, hereafter denoted by |nljm〉, one obtains a deformed boson
Hamiltonian whose ground state is, in the harmonic limit, described by a coherent state

Ψg = exp[d(b+
20 − b20)]|0〉b, (3.4)

with |0〉b standing for the vacuum state of the boson operators and d a real parameter which simulates
the nuclear deformation. On the other hand, the average of H̃ on Ψg is similar to the Nilsson
Hamiltonian [24]. Due to these properties, it is expected that the best trial functions to generate a
spherical basis are:

Ψpc
nlj = |nljm〉Ψg. (3.5)

The projected states are obtained by acting on these deformed states with the projection operator

P I
MK =

2I + 1

8π2

∫

DI
MK

∗
(Ω)R̂(Ω)dΩ, (3.6)

where DI
MK(Ω) denotes the rotation matrix corresponding to the Euler angles Ω. The subset of

projected states :
ΦIM

nlj (d) = N I
nljP

I
MI [|nljI〉Ψg] ≡ N I

nljΨ
IM
nlj (d), (3.7)

are orthogonal with the normalization factor denoted by N I
nlj.

Although the projected states are associated to the particle-core system, they can be used as a
single particle basis. Indeed, when a matrix element of a particle like operator is calculated, the
integration on the core collective coordinates is performed first, which results in obtaining a final
factorized expression: one factor carries the dependence on deformation and one is a spherical shell
model matrix element.

The single particle energies are approximated by the average of the particle-core Hamiltonian
H ′ = H̃ −Hcore on the projected spherical states defined by Eq.(3.7):

ǫI
nlj = 〈ΦIM

nlj (d)|H ′|ΦIM
nlj (d)〉. (3.8)

The off-diagonal matrix elements of H ′ is ignored at this level. Their contribution is however considered
when the residual interaction is studied. It is an open interesting question how to determine the mean
field operator which admits the energies given by Eq.(3.8) as eigenvalues.

As shown in Ref.[15], the dependence of the new single particle energies on deformation is similar
to that shown by the Nilsson model [24]. The quantum numbers in the two schemes are however
different. Indeed, here we generate from each j a multiplet of (2j + 1) states distinguished by the
quantum number I, which plays the role of the Nilsson quantum number Ω and runs from 1/2 to j
and, moreover, the energies corresponding to the quantum numbers K and -K are equal to each other.

The deformation dependence of the single particle energies, associated to the projected spherical
single particle states, is illustrated in Figs 6, 7 for the protons and neutrons in 154Sm, respectively.

On the other hand, for a given I there are 2I +1 degenerate sub-states while the Nilsson states are
only double degenerate. As explained in Ref.[15], the redundancy problem can be solved by changing
the normalization of the model functions:

〈ΦIM
α |ΦIM

α 〉 = 1 =⇒
∑

M

〈ΦIM
α |ΦIM

α 〉 = 2. (3.9)

Due to this weighting factor the particle density function is providing the consistency result that the
number of particles which can be distributed on the (2I+1) sub-states is at most 2, which agrees
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Figure 6: Proton single particle energies are plotted as function of the nuclear deformation parameter
d for 154Sm.

with the Nilsson model. Here α stands for the set of shell model quantum numbers nlj. Due to this
normalization, the states ΦIM

α used to calculate the matrix elements of a given operator should be
multiplied with the weighting factor

√

2/(2I + 1).
Finally, we recall a fundamental result, obtained in Ref.[18], concerning the product of two pro-

jected states, which comprises a product of two core components. Therein we have proved that the
matrix elements of a two body interaction corresponding to the present scheme are very close to the
matrix elements corresponding to spherical states projected from a deformed state consisting of two
spherical single particle states times a single collective core wave function. The small discrepancies of
the two types of matrix elements could be washed out by using slightly different strengths for the two
body interaction in the two methods. This feature is caused by the coherent state properties.

4 The model Hamiltonian and the pnQRPA approach

As I have already mentioned in the present lecture we are interested to describe the Gamow-Teller
two neutrino double beta decay of an even-even deformed nucleus. The 2νββ process is conceived
as two successive single β− transitions. The first transition connects the ground state of the mother
nucleus to a magnetic dipole state 1+ of the intermediate odd-odd nucleus which subsequently decays
to the first state 2+ of the daughter nucleus. The second leg of the transition is forbidden within the
pnQRPA approach but non-vanishing within a higher pnQRPA approach [21]. The states, involved
in the 2νββ process are described by the following many body Hamiltonian:

H =
∑

ταIM

2

2I + 1
(ǫταI − λτα)c†ταIM cταIM −

∑

ταα′I

Gτ

4
P †

ταIPτα′I
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Figure 7: Neutron single particle energies are plotted as function of the nuclear deformation parameter
d for 154Sm.

+ 2χ
∑

pn;p′n′;µ

β−
µ (pn)β+

−µ(p′n′)(−)µ − 2χ1

∑

pn;p′n′;µ

P−
1µ(pn)P+

1,−µ(p′n′)(−)µ

−
∑

τ,τ ′=p,n

Xτ,τ ′QτQ
†
τ ′ . (4.1)

The operator c†ταIM (cταIM ) creates (annihilates) a particle of type τ (=p,n) in the state ΦIM
α , when

acting on the vacuum state |0〉. In order to simplify the notations, hereafter the set of quantum
numbers α(= nlj) will be omitted. The two body interaction consists of three terms, the pairing,
the dipole-dipole particle-hole (ph) and the particle-particle (pp) interactions. The corresponding
strengths are denoted by Gτ , χ, χ1, respectively. All of them are separable interactions, with the
factors defined by the following expressions:

P †
τI =

∑

M

2

2I + 1
c†τIMc†

τ̃ IM
,

β−
µ (pn) =

∑

M,M ′

√
2

Î
〈pIM |σµ|nI ′M ′〉

√
2

Î ′
c†pIMcnI′M ′ ,

P−
1µ(pn) =

∑

M,M ′

√
2

Î
〈pIM |σµ|nI ′M ′〉

√
2

Î ′
c†pIMc†

ñI′M ′

, Î =
√

2I + 1

Q
(τ)
2µ =

∑

i,k

q
(τ)
ik

(

c†i ck

)

2µ
, q

(τ)
ik =

√
2

Îk

〈Ii||r2Y2||Ik〉. (4.2)
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The remaining operators from Eq.(4.1) can be obtained from the above operators, by hermitian con-
jugation.

The one body term and the pairing interaction terms are treated first through the standard BCS
formalism and consequently replaced by the quasiparticle one body term

∑

τIM Eτa†τIMaτIM . In terms

of quasiparticle creation (a†τIM ) and annihilation (aτIM ) operators, related to the particle operators
by means of the Bogoliubov-Valatin transformation, the two body interaction terms, involved in the
model Hamiltonian, can be expressed just by replacing the operators (3.2) by their quasiparticle
images. Thus, the Hamiltonian terms describing the quasiparticle correlations become a quadratic
expression in the dipole and quadrupole two quasiparticles and quasiparticle density operators:

A†
1µ(pn) =

∑

mp,mn

C
Ip In 1
mp mn µa†pIpmp

a†nInmn
,

B†
1µ(pn) =

∑

mp,mn

C
Ip In 1
mp −mn µa†pIpmp

anInmn
(−)In−mn ,

A†
2µ(ττ ′) =

∑

mτ ,m
τ ′

C
Iτ I

τ ′
2

mτ m
τ ′

µa†τIτ mτ
a†τ ′I

τ ′
m

τ ′
, (4.3)

B†
2µ(ττ ′) =

∑

mτ ,m
τ ′

C
Iτ I

τ ′
2

mτ −m
τ ′

µa†τIτ mτ
aτ ′I

τ ′
m

τ ′
(−)Iτ ′

−m
τ ′ , τ, τ ′ = p, n.

The basic operators defining the model Hamiltonian can be expressed as:

β−
µ (k) = σkA

†
1µ(k) + σ̄kA1,−µ(k)(−)1−µ + ηkB

†
1µ(k)− σ̄kB1,−µ(k)(−)1−µ,

β+
µ (k) = −

[

σ̄kA
†
1µ(k) + σkA1,−µ(k)(−)1−µ − η̄kB

†
1µ(k) + σkB1,−µ(k)(−)1−µ

]

,

P−
1µ(k) = ηkA

†
1µ(k)− η̄kA1,−µ(k)(−)1−µ − σkB

†
1µ(k) + σ̄kB1,−µ(k)(−)1−µ,

P+
µ (k) = −

[

−η̄kA
†
1µ(k) + ηkA1,−µ(k)(−)1−µ + σ̄kB

†
1µ(k)− σkB1,−µ(k)(−)1−µ

]

. (4.4)

In the above equations the argument “k” stands for the proton-neutron state (p,n). Here, the usual
notations for the dipole two quasiparticle and quasiparticle density operator have been used:

The coefficients σ and η are simple expressions of the reduced matrix elements of the Pauli matrix
σ and U and V coefficients:

σk =
2

1̂În

〈Ip||σ||In〉UIp
VIn

, σ̄k =
2

1̂În

〈Ip||σ||In〉VIp
UIn

,

ηk =
2

1̂În

〈Ip||σ||In〉UIp
UIn

, η̄k =
2

1̂În

〈Ip||σ||In〉VIp
VIn

, (4.5)

The model Hamiltonian, written in terms of quasiparticle operators, is further treated by the
pnQRPA formalism

4.1 The pnQRPA formalism

The dipole proton-neutron phonon operator has the expression [19, 20]:

Γ†
1µ =

∑

k

[X1(k)A†
1µ(k)− Y1(k)A1,−µ(k)(−)1−µ]. (4.6)

and satisfies the restrictions:

[Γ1µ,Γ†
1µ′ ] = δµ,µ′ , [Hqp,Γ

†
1µ] = ωΓ†

1µ. (4.7)

These operator equations yield a set of algebraic equations for the X (usually called forward going)
and Y (named back-going) amplitudes:
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(

A B
−B −A

)(

X
Y

)

= ω

(

X
Y

)

, (4.8)

∑

k

[|X(k)|2 − |Y (k)|2] = 1. (4.9)

The pnQRPA matrices A and B have analytical expressions:

Ak,k′ = (Ep + En)δpp′δnn′ + 2χ(σkσk′ + σ̄kσ̄k′)− 2χ1(ηkηk′ + η̄kη̄k′),

Bk,k′ = 2χ(σ̄kσk′ + σkσ̄k′) + 2χ1(η̄kηk′ + ηkη̄k′). (4.10)

All quantities involved in the pnQRPA matrices have been already defined. Note that the proton and
neutron quasiparticle energies are denoted in an abbreviated manner by Ep and En, respectively.

The charge conserving QRPA bosons

Γ†
2µ =

∑

k

[X2(k)A†
2µ(k)− Y1(k)A2,−µ(k)(−)µ], k = (p, p′), (n, n′), (4.11)

are determined by the QRPA equations associated to the matrices:

Aττ ′(ik; i′k′) = δττ ′δii′δkk′(Eτ
i + Eτ

k )−Xττ ′

(

q
(τ)
ik ξ

(τ)
ik

) (

q
(τ)
i′k′ξ

(τ)
i′k′

)

,

Bττ ′(ik; i′k′) = −Xττ ′

(

q
(τ)
ik ξ

(τ)
ik

) (

q
(τ)
i′k′ξ

(τ)
i′k′

)

, i ≤ k, i′ ≤ k′, (4.12)

where

ξ
(τ)
ik =

1
√

1 + δi,k

(U τ
i V τ

k + U τ
k V τ

i ) . (4.13)

Here V τ
i and U τ

i denote the square roots of occupation and non-occupation probabilities of the state
i of τ (=p,n) type respectively, given by the BCS equations. In order to distinguish between the
phonon operators acting in the RPA space associated to the mother and daughter nuclei respectively,
one needs an additional index. Also, an index labeling the solutions of the RPA equations is necessary.
Thus, the two kinds of bosons will be denoted by:

jΓ
†
1µ(k), j = i, f ; k = 1, 2, ...N (1)

s ;j Γ†
2µ(k), j = i, f ; k = 1, 2, ...N (2)

s . (4.14)

Acting with iΓ
†
1µ(k) and fΓ†

1µ(k) on the vacuum states |0〉i and |0〉f respectively, one obtains two
sets of non-orthogonal states describing the intermediate odd-odd nucleus. By contrast, the states

iΓ
†
2(k)|0〉i and fΓ†

2(k)|0〉f describe different nuclei, namely the initial and final ones, participating in
the process of 2νββ decay. The mentioned indices are however omitted whenever their presence is not
necessary.

4.2 Going beyond pnQRPA; The Boson Expansion (BE) procedure

Within the boson expansion formalism, the basic operators A†
1µ(p, n), A1µ, B†

1µ(p, n), B1µ are written
as polynomial expansions in terms of the QRPA boson operators with the expansion coefficients
determined such that their mutual commutation relations are preserved in each order of approximation
[25]. Based on this criterion the boson expansions of the quadrupole two quasiparticle and quadrupole
quasiparticle density charge conserving operators have been obtained by Belyaev and Zelevinsky in
Ref.[25]. For charge non-conserving two quasiparticle and quasiparticle density dipole operators the
expansion has been derived by one of us (A.A.R, in collaboration) in Ref.([21]). The latter expansion
has the peculiarity that the commutator algebra cannot be satisfied restricting the expansion to the
proton-neutron dipole bosons. However, this goal can be touched if the boson operators space is
enlarged by adding the charge conserving quadrupole two quasiparticle bosons. The last step consists
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in expressing the quasi-boson operators
0
A

†

1µ (pn),
0
A1µ (pn),

0
A

†

2µ (pp),
0
A

†

2µ (pp),
0
A

†

2µ (nn),
0
A2µ (nn)

(these are, in fact the operators denoted by the same symbol but without the index ”0”, with the
commutators approximated to be of boson type) as linear combination of the QRPA bosons. In
this way the basic operators mentioned above are written as polynomials of pn and pp + nn QRPA
bosons. The expansions involve not only the collective but also non-collective QRPA bosons. The
final expressions obtained in this way are:

A†
1µ(jpjn) =

∑

k1

{

A(1,0)
k1

(jpjn)Γ†
1µ(k1) +A(0,1)

k1
(jpjn)Γ1−µ(k1)(−)1−µ

}

+
∑

k1,k2,k3;l=0,2

{

A(3,0);l
k3k2k1

(jpjn)
[(

Γ†
2(k3)Γ

†
2(k2)

)

l
Γ†

1(k1)
]

1µ
+A(0,3);l

k3k2k1
(jpjn) [(Γ2(k3)Γ2(k2))l Γ1(k1)]1µ

}

+
∑

k1,k2,k3;l=0,2

{

A1;(22̄)l
k1k2k3

(jpjn)
[

Γ†
1(k1)

(

Γ†
2(k2)Γ2(k3)

)

l

]

1µ
+A(22̄)l;1

k3k2k1
(jpjn)

[(

Γ†
2(k3)Γ2(k2)

)

l
Γ1(k1)

]

1µ

}

B†
1µ(jpjn) =

∑

k1k2

{

B(2,0)
k1k2

(jpjn)
[

Γ†
1(k1)Γ

†
2(k2)

]

lµ
+ B(0,2)

k1k2
(jpjn) [Γ1(k1)Γ2(k2)]lµ

+ B11;12
k1k2

(jpjn)
[

Γ†
1(k1)Γ2(k2)

]

lµ
+ B11;2l

k1k2
(jpjn)

[

Γ†
1(k2)Γ1(k1)

]

lµ

}

, (4.15)

where the expansion coefficients are those given in Ref.[21] while the notations for the dipole and
quadrupole bosons introduced in the previous section have been used. The boson expansions associated
to the two quasiparticle and quasiparticle density proton-neutron operators have the property that
the two sides of Eqs.4.15 have the same matrix elements in a boson basis. Actually, this can be used
as a criterion to determine the expansion coefficients. For example the first expansion coefficients in
the above expression can be determined as:

A(1,0)
k1

(jpjn) = 〈0|
[

Γ1µ(k1), A
†
1µ(jp, jn)

]

|0〉,

B(2,0)
k1k2

(jpjn) =
∑

µ1,µ2

C1 2 1
µ1 µ2 µ〈0|

[

Γ1µ1
(k1),

[

Γ1µ2
(k2), B

†
1µ(jp, jn)

]]

|0〉. (4.16)

The properties of the nested commutators determine vanishing values for the coefficients accompanying
the operators involving an even number of bosons in the A† expansion and an odd number of bosons
in the B† expansion. Thus, the A†

1µ has an odd order boson expansion while B†
1µ exhibits an even

order expansion in bosons. It is worth mentioning that the matrix element of the double commutator
involved in Eq.4.16 does not depend on the order in which the commutators are performed. Indeed, the
same result is obtained when a) first the k2 boson is commuted with B† and the result is commuted with
the k1 boson and b) first the dipole boson is commuted with B† and the result is commuted with the
quadrupole boson. However, the commutation order is important when one determines the remaining
expansion coefficients. The ordering in the mentioned commutators is chosen such that the mutual
commutator equations of the basic operators A†

1µ, B†
1µ are satisfied in each order of approximation.

The comparison of the boson expansion formulated in Ref.[21] and other approaches may be found in
Ref.[30]

4.3 The GT amplitude for the transition 0+ → 2+ within the BE formalism

At this stage we can specify the intermediate states involved in the GT amplitude describing the
transition 0+ → 2+. The intermediate states |k,m〉 are k-boson states with k = 1, 2, 3 labeled by the
index m, indicating the spin and the ordering label of the RPA roots. Note that by contrast to the
case of ground to ground transition here the denominator has a cubic power which results in obtaining
a suppression of the corresponding GT amplitude. Inserting the boson expansions from Eq.(4.15) into
the expression of the β+ transition operator one can check that the following non-vanishing factors,
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at numerator, show up:

i〈0||iΓ1(k1)||1, 1k1
〉if 〈1, 1k2

||fΓ†
1(k2)fΓ2(1)||1, 21〉f ,

i〈0||iΓ1(k1)iΓ2(ik2)||2, 1k1
2k2
〉if 〈2, 1j121||fΓ†

1(j1)||1, 21〉f ,

i〈0||iΓ1(k1)iΓ2(k2)||2, 1k1
2k2
〉if 〈2, 1j12j2 ||fΓ†

1(j1)fΓ†
2(j2)fΓ2(1)||1, 21〉f ,

i〈0||iΓ1(k1)iΓ2(k2)iΓ2(k3)||3, 1k1
2k2

2k3
〉if 〈3, 1j12j221||fΓ†

1(j1)fΓ†
2(j2)||1, 21〉f . (4.17)

The term Ek,m from the denominator of Eq. (2.6) is the average of the energies of the mother and
daughter states |k,m〉 normalized to the average energy of the first pnQRPA states 1+ in the initial
and final nuclei. The left low indices ”i” and ”f” suggest that the phonon operators are built up with
quasiparticle operators characterizing the initial and final nuclei, respectively. Acting with the i and
f dipole single or dipole multi-phonon operators on the states |0〉i and |2+

f 〉 (or |0〉f ) one populates

two sets of states |1+〉i and |1+〉f respectively, characterizing the odd-odd intermediate nuclei. The
two sets are not orthogonal onto each other.

The matrix elements, listed above, are associated to partial transition amplitudes represented
pictorially in Fig.8.

5 Numerical application

The formalism described in the previous section, has been applied to eighteen isotopes which have been
earlier considered in Refs.[19, 20] for studying the double beta ground to ground transition. Among
these, eleven are proved to be, indeed, double beta ground to ground emitters, while the remaining ones
are suspected to have this property due to the corresponding positive Q-value. Since the excitation
energies for the states 2+ in the daughter nuclei are not large, the Q-values characterizing the double
beta transition 0+ → 2+ are also positive. For some of the selected nuclei, experimental data either
for the half life of the process or for the low bounds of the half lives are available.

In order to save the space, here we shall present the results of our calculations for ten double beta
emitters: 48Ca, 96Zr, 100Mo, 104Ru, 110Pd, 116Cd, 128Te, 130Te, 134Xe, 136Xe.

5.1 Fixing the parameters involved by the model Hamiltonian

5.1.1 The mean field parameters

The spherical shell model parameters for these double beta emitters and the corresponding daughter
nuclei are given by:

~ω0 = 41A1/3, C = 2~ω0κ, D = ~ω0µ, (5.1)

with the strength parameters κ and µ having the same (Z,N) dependence as in Ref. [32].
The angular momentum projected basis depends on two additional parameters. These are the de-

formation parameter d and the factor k entering the canonical transformation relating the quadrupole
coordinate and boson operators [19, 20]. They were fixed in the following manner: We require that
the relative energy for the states |1f 7

2
7
2〉 and |1d5

2
1
2 〉 be equal to that of Nilsson levels with Ω = 7

2 and
Ω = 1

2 in the N = 3 major shell. Moreover, adding to the mean field term defined before a QQ two
body interaction we require that the lowest root for the charge conserving QRPA equation be equal
to the experimental energy of the lowest 2+ state in the mother nucleus. Throughout this paper, the
M-degenerate states ΦIM

nlj are denoted by |n + 1 ljI〉.

5.1.2 The strength of pairing interactions

The BCS calculation has been performed within a restricted single particle space. Due to the level
crossing, the restriction of the single particle space for deformed nuclei is different from that for
spherical nuclei. Indeed, in spherical nuclei Ikeda sum rule (ISR) is satisfied if two major shells plus
the spin orbit partner of the intruder state are included in the single particle space. Suppose that
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Figure 8: One illustrates various GT transitions 0+ → 2+ via one (a)) two (b)) and (c)) and three
(d)) phonon states.

the neutron open shell has N=3 with the intruder state |1g9/2〉, in the standard spherical shell model
picture. In the present formalism, including the spin-orbit partner state |1g7/2〉 means to consider the
states ΦIM

0,4, 7
2

with I = 7/2, 5/2, 3/2, 1/2. However, some of these states are higher in energy than

states belonging to the |2d5/2I〉 multiplet. Due to such features appearing both in the upper part of
the major open shell of neutrons and the bottom side of the proton major open shell we truncated the
space considering an inert (Z,N) core and a number of states lying above the core states. The core and
the number of outside states are chosen such that the non-occupation probabilities for the neglected
bottom states as well as the occupation probabilities for the ignored upper states are smaller than
0.01. Of course, the single particle space for protons and neutrons are the same. Our calculations were
performed with the core and number of states given in Table I. Once the single particle space is defined,
the number of the dipole proton-neutron states can be calculated. Furthermore, the dimensions of the
pnQRPA matrices for mother (D1) and daughter (D2) nuclei are readily obtained. These dimensions
are also given in Table I. It is worth mentioning that using the single particle spaces given in Table I,
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Ikeda sum rule is satisfied for both the mother and daughter nuclei considered in the present paper.

Nucleus 48Ca 96Zr 100Mo 104Ru 110Pd

The (Z,N) core (0,0) (20,20) (26,26) (26,26) (26,26)

Number of states 19 20 20 22 23

D1 118 128 132 140 154

D2 115 128 132 140 154

Nucleus 116Cd 128Te 130Te 134Xe 136Xe

The (Z,N) core (26,26) (44,44) (44,44) (44,44) (44,44)

Number of states 27 22 23 21 21

D1 166 142 150 138 154

D2 166 128 132 120 140

Table 1: The number of single particle proton states lying above the (Z,N) core is given. The single
particle space for neutrons is identical to that for protons. D1 and D2 are the dimensions of the
pnQRPA matrix for mother and daughter nuclei, respectively.

The dimensions of the single particle basis used in our calculations are presented in Table 1. Note
that an inert core is assumed for each case and a limited number of states above the considered core
were taken into account.

The paring strengths have been fixed so that the gap energies known in the mother and daughter
nuclei are reproduced. The results are given in Table II.

Nucleus d k Gp [MeV] Gn [MeV] χ [MeV] gpp

(

1
2Qββ + mec

2
)

[MeV ]
48Ca 0.3 10.00 0.65 0.45 0.180 0.0 2.646
48Ti 0.05 2.00 0.46 0.36 0.180 0.0
96Zr 1.5 10.20 0.26 0.26 0.5 0.112 2.186
96Mo 1.2 7.20 0.3 0.3 0.5 0.112
100Mo -1.4 10.00 0.28 0.26 0.050 0.112 2.026
100Ru -0.6 3.6 0.285 0.220 0.050 0.112
104Ru -1.55 8.80 0.26 0.2 0.150 2.750 1.161
104Pd -1.35 6.94 0.26 0.180 0.150 2.750
110Pd -1.6 6.00 0.30 0.32 0.148 2.450 1.516
110Cd -0.8 3.06 0.30 0.18 0.148 2.450
116Cd -1.8 3.00 0.20 0.245 0.187 2.120 1.916
116Sn -1.2 2.50 0.18 0.275 0.187 2.120
128Te 0.5 1.62 0.27 0.22 0.265 1.908 0.946
128Xe 1.7 6.50 0.23 0.22 0.265 1.908
130Te 0.493 1.88 0.24 0.21 0.280 1.895 1.776
130Xe 1.4 5.00 0.24 0.205 0.280 1.895
134Xe -0.1 1.95 0.28 0.30 0.101 0.0 0.931
134Ba -0.468 1.50 0.24 0.24 0.101 0.0
136Xe -0.1 1.80 0.23 0.29 0.190 2.25 1.751
136Ba -0.698 2.16 0.19 0.20 0.190 2.25

Table 2: The pairing and Gamow Teller ph interaction strengths are given in units of MeV. The ratio
of the two dipole interaction ( particle-hole and particle-particle) strengths, denoted by gpp, is also
given.

68



5.1.3 The long range Q.Q interaction

The microscopic Hamiltonian used for describing the double beta 0+ → 2+ transition, involves in
addition to the terms considered in the treatment of the ground to ground transition, the quadrupole-
quadrupole interaction between alike nucleons. As we already mentioned this interaction is needed
in order to define the charge conserving quadrupole phonon operators used by the boson expansion
procedure. Moreover, this interaction is used to describe the final state, i.e. 2+, in the daughter
nucleus. The strength of the QQ interaction was fixed by requiring that the first root of the QRPA
equation for the quadrupole charge conserving boson is close to the experimental energy of the first
2+ state. The results of the fitting procedure are given in Table III.

Nucleus Eexp.
2+ [keV] Eth.

2+ [keV] b4Xpp[keV ] Nucleus Eexp.
2+ [keV] Eth.

2+ [keV] b4Xpp[keV ]
48Ca 983.00 983.00 71.30 130Te 839.49 831.03 12.12
48Ti 983.52 979.02 42.80 130Xe 536.07 534.2 17.28
76Ge 562.93 558.88 50.80 134Xe 847.04 841.75 20.00
76Se 559.10 558.87 65.20 134Ba 604.72 607.98 17.56
82Se 654.75 654.73 19.10 136Xe 1313.027 1314.90 16.37
82Kr 776.52 776.84 25.84 136Ba 818.49 810.30 14.82
96Zr 1750.49 1465.62 2.00 148Nd 301.702 298.00 24.29
96Mo 778.24 776.81 38.10 148Sm 550.250 553.00 24.64
100Mo 535.57 534.43 31.50 150Nd 130.21 135.24 27.32
100Ru 539.5 536.11 19.70 150Sm 330.86 333.12 22.45
104Ru 358.03 358.45 29.80 154Sm 81.976 83.05 22.62
104Pd 555.81 561.83 20.90 154Gd 123.070 123.35 20.37
110Pd 373.8 370.45 44.65 160Gd 75.26 73.13 18.70
110Cd 657.76 662.85 25.10 160Dy 86.788 87.25 19.03
116Cd 513.49 514.50 30.50 232Th 49.369 48.32 15.25
116Sn 1293.56 1179.16 7.00 232U 47.572 45.22 14.94
128Te 743.22 746.12 12.12 238U 44.916 47.34 12.91
128Xe 442.91 449.58 19.43 238Pu 44.076 46.15 14.83

Table 3: The experimental and calculated energies for the first 2+ states in mother and daughter
nuclei are given. The strength parameter of the quadrupole-quadrupole interaction was fixed such
that the experimental energies are reproduced. In our calculations we considered Xpp = Xnn = Xpn.
The oscillator length is denoted by b = (~/Mω)1/2.

5.1.4 The ph and pp dipole interaction strengths

The pp and ph interaction are related by the so called Pandya transformation. This is the reason the
two interactions have not been considered as independent interactions. Consequently the pnQRPA
approach took into account only the ph interaction. This happened until 1984 when Cha[33] noticed
that the matrix element describing the single β+ transition is very sensitive to the variation of the pp
interaction strength. This reference determined people working on the double beta decay issue to use
the ph and pp interactions as independent interaction. One expects therefore that the pp interaction
influences the second leg of the double beta decay. On the other hand the centroid of the Gamow-Teller
giant resonance is very sensitive to the strength of the ph interaction but practically is insensitive to
the variation of the pp interaction.

The strengths of the dipole proton-neutron interaction might be taken as in Ref.[34] although the
single particle basis used therein, is different from ours:

χ =
5.2

A0.7
MeV, χ1 =

0.58

A0.7
MeV. (5.2)

The A dependence for the ph interaction strength has been derived by fitting the position of the GT
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resonance for 40Ca, 90Zr and 208Pb. The strength χ1 has been fixed so that the beta decay half lives
of the nuclei with Z ≤ 40 are reproduced.

A certain caution, however, is necessary when these formulae are used, since the A dependence is
conditioned by the mass region [35] as well as by the single particle space [36, 37]. For example, in
Ref.[38] the GT resonance centroids in 128Te and 130Te, located at 13.7 and 14.1 MeV respectively,
are reproduced with the χ values equal to 0.157 and 0.16 MeV respectively. These values for χ are
different from the predictions of Eq.(5.2) corresponding to A=128 and A=130, respectively. Moreover,
as we see from Table II,in the current paper the right position of these GT resonances are obtained,
by using χ = 0.265 and χ = 0.280, respectively.

Mother Transition Intermediate Transition Daughter
nucleus log ft nucleus log ft nucleus

100Mo
β+/EC← 100Tc

β−

→ 100Ru

Exp. - 4.66 a)

Th. 4.78 4.62

104Ru
β+/EC← 104Rh

β−

→ 104Pd

Exp. 4.32 b) 4.55 b)

Th. 4.20 4.62

110Pd
β+/EC← 110Ag

β−

→ 110Cd

Exp. 4.08 c) 4.66 c)

Th. 3.86 4.83

116Cd
β+/EC← 116In

β−

→ 116Sn

Exp. - 4.662 d)

Th. 3.94 4.660

128Te
β+/EC← 128I

β−

→ 128Xe

Exp. - 6.061 e)

Th. 4.47 6.063

130Te
β+/EC← 130I

β−

→ 130Xe
Exp. - -
Th. 4.47 6.061

134Xe
β+/EC← 134Cs

β−

→ 134Ba
Exp. - -
Th. 8.38 6.07

Table 4: The experimental and theoretical log ft values characterizing the β+/EC and β− processes
of the intermediate nucleus ground state (1+). Experimental data are from: a)[39],b)[40], c)[41], d)[42],
e)[43]
.

It is noteworthy the fact that the daughter nuclei involved in a double beta process are stable
against β+ transitions. Therefore χ1 is to be determined either using information about the half life of
a β+ emitter lying close, in the nuclide chart, to the daughter nucleus under consideration or by fitting
the data for a (p,n) reaction having the daughter as a residual nucleus. As we already mentioned,
throughout this work, the ratio χ/χ1 is denoted, as usual, by gpp.

The adopted procedure to fix the proton-neutron dipole interaction strengths is as follows. When-
ever, in the intermediate odd-odd nucleus, the position of the GT resonance centroid is known, the ph
interaction strength is fixed so that the above mentioned data is reproduced. As shown in Table IV,
for 104Ru and 110Pd, the log ft values associated to the β+/EC and β− transitions of the intermediate
nuclei 104Rh and 110Ag respectively, are experimentally known. For these particular cases, χ and gpp

are fixed by fitting the two mentioned experimental data. The log ft values were calculated by using
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the following expression for ft:

ft∓ =
6160

[l〈11||β±||0〉lgA]2
. (5.3)

Here |11M〉 denotes the first dipole phonon state in the intermediate odd-odd nucleus while |0〉 is the
pnQRPA ground state. The low index ”l” may take the value ”i” and ”f” depending whether the end
state of the transition is characterizing the double beta mother or daughter nucleus. Therefore l = f
is associated to single β− transition, while l = i to the β+/EC process. We chose gA = 1.0 in order
to take account of the effect of distant states responsible for the ”missing strength” in the giant GT
resonance [10].

For 100Tc, 116In and 128I only the log ft values for their β− decay are known. For these situations
χ was fixed in order to get the right position for the GT resonance while gpp by fitting the log ft value
characterizing the β− decay of the corresponding intermediate nucleus. Regarding 130I and 134Cs we
assumed the same log ft value as for 128I. For 48Ca, we considered χ and gpp as given by Eq.(5.2). To
see the effect of gpp on MGT we repeated the calculations by keeping the same χ as before but taking
gpp = 0. It seems that fixing χ as to reproduce the GT resonance centroid and taking gpp = 0 yields a
better agreement with the experimental data. For 96Zr, χ was fixed by fitting the energy for the GT
resonance centroid, while gpp was taken as required by Eq.5.2.

It is worth mentioning that both strength, χ and χ1, have been fixed by the calculations dealing
with the ground to ground transition.

Concluding, the calculation of the transition rate 0+ → 2+ is free of any adjustable parameter

Having the RPA states defined, the GT amplitude has been calculated by means of Eq.(2.6), while
the half life with Eq.(2.2). The Fermi integral for the transition 0+ → 2+, denoted by G02, was
computed by using the analytical result given in Ref. [10].

5.1.5 Results for double beta decay

Nucleus Q2+

ββ ∆E2 |M (0→0)
GT | |M (0→2)

GT | T
(0→2)
1/2 [yr]

[ mec
2] [MeV] [MeV−1] [MeV−3] present Exp. Ref. [26]

48Ca 6.432 2.473 0.043 0.901·10−3 1.72·1024

96Zr 5.033 2.913 0.113 0.834·10−3 2.27·1025 > 7.9·1019 4.8·1021

100Mo 4.874 1.756 0.305 0.136·10−2 1.21·1025 >1.6·1021 3.9·1024

a)2.5·1025

b)1.2·1026

104Ru 1.456 0.883 0.781 0.028 6.2·1028

110Pd 2.646 1.182 0.263 0.050 1.48·1025

116Cd 2.967 1.269 0.116 0.507·10−2 3.4·1026 >2.3·1021 1.1·1024

128Te 0.836 1.305 0.090 0.229·10−2 4.7·1033 >4.7·1021 1.6·1030

130Te 3.902 2.358 0.055 0.620·10−3 6.94·1026 >4.5·1021 2.7·1023

134Xe 0.460 0.806 0.039 0.621·10−2 5.29·1035

136Xe 3.251 1.518 0.039 0.249·10−2 3.88·1026 2.0·1024

Table 5: The GT transition amplitudes and the half lives of the double beta decay 0+ → 2+ are
given. Also, the Q values are given in units of mec

2. ∆E2 is the energy shift defined in the text.
For comparison, we give also the available experimental results as well as some theoretical predictions
obtained with other formalisms: a),b)Ref.[29],c) Ref.[27],d),e)[29] for different nuclear deformations,
β = 0.28 and β = 0.19, respectively. The MGT values for the ground to ground transitions are also
listed. For 100Mo we mention the result of Ref. ([29]) obtained with an SU(3) deformed single particle
basis a) and with a spherical basis b).

The final results are collected in Table V. Therein one may find also the available experimental
data as well as some theoretical results obtained with other approaches. One notices that the half life
is influenced by both the phase space integral (through the Q-value) and the single particle properties
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which determine the transition amplitude. Indeed, for 128Te and 134Xe the small Q-value causes a
very large half life, while in 48Ca the opposite situation is met. By contrary, the Q value of 110Pd is
about the same as for 76Ge but, due to the specific single particle and pairing properties of the orbits
participating coherently to the process, the half life for the former case is more than three orders of
magnitude less than in the later situation.

In order to isolate the deformation effect on the process half life we repeated the calculations in
the spherical limit, i.e. d → 0. In this limit the single particle energies coincide with the spherical
shell model energies. The process of going to the spherical limit alters the pairing properties as well
as the energies of the quadrupole collective states 2+, in mother and daughter nuclei. We modified
the the strengths for pairing and Q.Q interactions such that the pairing gaps and the 2+ energies
are the same as in the deformed picture. Also we preserved the dimension for single particle space
for both protons and neutrons. For illustration we give here the result for the case of 100Mo where
the half life for the deformed situation, 1.21×1025, becomes in the spherical limit equal to 0.46×1024.
Thus, one may conclude that the nuclear deformation enhances the decay half life. The same effect of
deformation on the GT matrix elements was pointed out by Zamick and Auerbach in Ref.[47]. Indeed,
they calculated the GT transition matrix elements for the neutrino capture νµ+12C →12 N +µ− using
different structures for the ground states of 12C and 12N : a) spherical ground states; b) asymptotic
limits of the wave functions and 3) deformed states with an intermediate deformation of δ = −0.3.
The results for the transition rate were 16

3 , 0 and 0.987, respectively. Similar results are obtained also
for the spin M1 transitions in 12C. The ratio between the transition rates obtained with spherical and
deformed basis explains the factor of 5 overestimate in the calculations of Ref.[48], where a spherical
basis is used.

It is worth mentioning the good agreement between our prediction for 100Mo and that of Ref.[29]
obtained with a deformed SU(3) single particle basis.

The transition matrix elements reported in Refs.[26, 27] are larger than those given here. The
discrepancies are caused by the differences between the two approaches: a) In the quoted references
one uses a spherical single particle basis, while here a deformed one is considered; b) The single
particle energies used there are Woods-Saxon energies adjusted so that the quasiparticle spectrum in
the odd-odd system be realistically described. We recall that the spherical limit of our model provides
spherical shell model single particle energies. Also, the single particle spaces are different in the two
formalisms; c) The higher RPA approach from Ref.[26] is the multiple commutator method (MCM)
applied to the pnQRPA bosons or, alternatively [27], the renormalized pnQRPA bosons. A detailed
comparison of the boson expansion formalism and MCM have been performed in Ref. [24]. It is a
difficult task to make explicite the quantitative effect brought by the factors a), b), c) which, as a
matter of fact, is beyond the scope of the present paper. However, concerning the sources a) and
c) for the deviations one could draw some qualitative conclusions. Indeed, as we have already seen
before, the nuclear deformation decreases the transition matrix element and consequently enhances
the process half life. The MCM and boson expansion approaches provide different expressions for
the terms which are cubic in bosons, involved in the transition operator. Indeed, the coefficients of
these terms given by MCM are cubic in the forward amplitudes (X), while in the boson expansion
formalism the expansion coefficients of the mentioned terms are at most quadratic in the amplitudes
X. One expects, therefore, that MCM provides larger matrix elements for these terms which results
in having a shorter half life. Thus, the effects caused by the factors a) and c) are consistent with the
sign of the discrepancies of results corresponding to the two approaches.

To have a reference value for the matrix elements associated to the transition 0+ → 2+, in Table
II are listed also the MGT values for the ground to ground transitions [20]. The ratio of the transition
0+ → 0+ and 0+ → 2+ matrix elements is quite large for 76Ge (398), 100Mo (224) and 96Zr (136) but
small for 110Pd (5.26) and 134Xe (6.3). However, these ratios are not directly reflected in the half lives,
since the phase space factors for the two transitions are very different from each other and, moreover,
the differences depend on the atomic mass of the emitter.

The composing terms of the transition amplitude are suggestively represented in Fig.8. The term
corresponding to Fig.8 d) has a negligible contribution and, therefore, has been ignored. The terms
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corresponding to the panels a), b) and c) of Fig. 8 are denoted by M
(1)
GT , M

(2)
GT , M

(3)
GT respectively. In

order to see the relative contribution of the three terms to the total amplitude, in Table VI we give,
for illustration, the partial contribution for two nuclei. We see that for the cases listed in Table VI,

Nucleus M
(0→2)
GT × 106 M

(1)
GT × 106 M

(2)
GT × 106 M

(3)
GT × 106

[Mev−3] [Mev−3] [Mev−3] [Mev−3]
48Ca 901.100 900.000 0.07 - 0.004

104Ru 28281.530 26110.000 1583.810 587.72

Table 6: The values of the partial Gamow-Teller transition amplitudes M
(1)
GT ,M

(2)
GT ,M

(3)
GT , are given for

some of the nuclei studied in the present paper. Their sum is denoted by M
(0→2)
GT .

the term M
(1)
GT prevails over the other ones. There are some cases not listed here where M2

GT is the

dominant partial amplitude. None for the cases studied in our publications has M
(3)
GT as a dominant

term. The leading contributions coming from M
(1)
GT and M

(2)
GT have opposite sign. There are however

two exceptions, the cases of 104Ru and 154Sm, where the two contributions add coherently.

6 Conclusions

In the previous sections we presented the formalism as well as the numerical results for the two neu-
trino double beta decay to the collective excited state 2+. The Gamow-Teller transition rate has been
calculated within a boson expansion formalism which is essentially a higher random phase approx-
imation approach. The single particle basis is generated through an angular momentum projection
procedure from a deformed set of states. The projected basis depends on a real parameter d which
simulates the nuclear deformation. In the limit of d → 0 the spherical shell model basis is obtained
while for d different of zero, the single particle energies depend on the deformation parameter in a
similar manner as the energies predicted by the Nilsson model. Due to these features the present
formalism is able to describe in an unified fashion the spherical and deformed nuclei. In our previous
publications we treated various situations when the mother and daughter had different deformations,
in the context of the ground to ground double beta transition. We have seen that deformation causes
a fragmentation of the single beta decays strength among the pnQRPA states. One expects that for
the transition 0+ → 2+ the nuclear deformation is even more important. This can be understood even
at the first glance since the larger the deformation of the daughter nucleus the lower the energy of the
first 2+ state. Consequently, the Q value is expected to be larger.

It is worth noticing that during the transition 0+ → 2+ several symmetries might be broken.
Indeed, the second leg of the transition connects a magnetic state 1+ from the intermediate odd-odd
nucleus to an electric state 2+ in the daughter nucleus. Among the nuclei considered in the present
work there are situations when the mother nucleus is spherical while the daughter is a quadrupole
deformed system. Moreover, in the case of 160Gd decay there are suspicions that the mother has
not a good space reflection symmetry [31] while the daughter satisfies this symmetry. Since the GT
transition operator involves quadrupole phonon operators it may excite states whose isospin is different
from that characterizing the mother ground state by ∆T = 1, 2. The isospin mixing is also favored by
the inclusion of the pp interaction. On the other hand each symmetry breaking causes a new nuclear
phase with specific properties. To our knowledge it is still an open question how these symmetry
breaking are reflected in the decay rate. On this line, the results of the present work suggest to what
direction the decay rate is modified by the nuclear deformation.

Concerning the quantitative description, the results presented in Table V reveal the following
features. There are five nuclei whose half lives fall in the range accessible to experiment. These
are: 48Ca, 96Zr, 100Mo, 110Pd. Comparing with the results obtained by Toivanen and Suhonen[26] or
Civitarese and Suhonen [28], the half lives obtained in the present work are larger. The reason is that
we use a deformed single particle basis while the quoted authors use a spherical one. The agreement
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we obtain for 100Mo with the calculations from Ref.[29], where a deformed SU(3) basis is used, support
the above statement.

It is worth mentioning that the double beta transitions to excited states have been considered by
several authors in the past, but the calculations emphasized the role of the transition operator and
some specific selection rules. Many calculations regarded the neutrinoless process. Thus, in Ref.[49]
it was shown that the neutrinoless transition to the excited 0+ for medium heavy nuclei might be
characterized by matrix elements which are larger than that of ground to ground transition and that
happens since in the first transition, the change of the K quantum number is less. In Ref.[50] it has
been stated that the 0+ → 2+ matrix element depends on the left-right current coupling and not on the
neutrino mass. This could provide a way of fixing the strength of the left-right coupling if the transition
matrix element is experimentally known. However, according to the calculations of Haxton et al. [8],
the matrix element is strongly suppressed and, therefore, the mentioned method of fixing the coupling
parameter would not be reliable. Although the transition operator might have a complex structure,
many calculations have been performed with the approximate interaction [σ(1) × σ(2)]λ=2t+(1)t+(2)
in order to test some selection rules. Thus, this interaction was used in Ref.[51] for the transition
0+ → 2+ of 48Ca, using a single j calculation. It has been proved that the matrix element for this
transition is suppressed due to the signature selection rules. Actually, this result confirms the feature
of suppression for the 0+ → 2+ double beta transition matrix element pointed out by Vergados [52]
and Haxton et al. [8].

The transition to 0+
1 was examined for A = 76, 82, 100, 136 nuclei by assuming light and heavy

Majorana neutrino exchange mechanism and trilinear R-parity violation. We recall that R parity is
a discrete multiplicative symmetry defined as Rp = (−1)3B+L+2S , where S, B and L are the spin, the
baryon and the lepton quantum number. Thus Rp = +1 for Standard Model particles and Rp = −1
for superpartners. Higher RPA as well as renormalization effects for the nuclear matrix elements were
included [53].

Here we show that the transition 0+ → 2+ in a 2νββ process is allowed by renormalizing the GT
transition operator with some higher RPA corrections which results in making the matrix elements
from Eq.(4.17) non-vanishing. Generally speaking, transitions to the excited states are suppressed
due to the reduced Qββ value. However, this restriction could, in some cases, be compensated by a
possible lower background due to the coincindence of the β particles with the γ from the excited final
state. Indeed, our calculations pointed out that, for some nuclei, the nuclear matrix elements for the
transitions to the state 2+ are comparable to those charcaterizing the ground to ground transition.

The calculated MGT values of the present work are smaller than those from Ref.[26] obtained with
a spherical single particle basis, which agrees with the earlier calculations of Zamick and Auerbach
for 12C, showing that the nuclear deformation suppresses the GT matrix elements.
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