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Abstract

Finite Unified Theories (FUTs) are N=1 supersymmetric Grand Unified Theories, which can
be made all-loop finite, both in the dimensionless (gauge and Yukawa couplings) and dimensionful
(soft supersymmetry breaking terms) sectors. This remarkable property, based on the reduction
of couplings at the quantum level, provides a drastic reduction in the number of free parameters.
By confronting the predictions of SU(5) FUTs with the top and bottom quark masses we are able
to discriminate among different models. Including further low-energy phenomenology constraints,
such as B physics observables, the bound on the SM Higgs mass and the cold dark matter density,
we derive predictions for the lightest Higgs boson mass and the sparticle spectrum. Next we consider
gauge theories defined in higher dimensions, where the extra dimensions form a fuzzy space (a finite
matrix manifold). We reinterpret these gauge theories as four-dimensional theories with Kaluza-
Klein modes. We then perform a generalized à la Forgacs-Manton dimensional reduction. We
emphasize some striking features emerging such as (i) the appearance of non-abelian gauge theories
in four dimensions starting from an abelian gauge theory in higher dimensions, (ii) the fact that the
spontaneous symmetry breaking of the theory takes place entirely in the extra dimensions and (iii)
the renormalizability of the theory both in higher as well as in four dimensions. Then reversing the
above approach we present a renormalizable four dimensional SU(N) gauge theory with a suitable
multiplet of scalar fields, which via spontaneous symmetry breaking dynamically develops extra
dimensions in the form of a fuzzy sphere S2

N
. We explicitly find the tower of massive Kaluza-Klein

modes consistent with an interpretation as gauge theory on M4 ×S2, the scalars being interpreted
as gauge fields on S2. Depending on the parameters of the model the low-energy gauge group can
be SU(n), or broken further to SU(n1)×SU(n2)×U(1). Therefore the second picture justifies the
first one in a renormalizable framework but in addition has the potential to reveal new aspects of
the theory.

1 Introduction

The theoretical efforts to establish a deeper understanding of Nature have led to very interesting
frameworks such as String theories and Non-commutative Geometry both of which aim to describe
physics at the Planck scale. Looking for the origin of the idea that coordinates might not commute
we might have to go back to the days of Heisenberg. In the recent years the birth of such speculations
can be found in refs. [1, 2]. In the spirit of Non-commutative Geometry also particle models with
non-commutative gauge theory were explored [3] (see also [4]), [5–9]. On the other hand the present
intensive research has been triggered by the natural realization of non-commutativity of space in the
string theory context of D-branes in the presence of a constant background antisymmetric field [10].
After the work of Seiberg and Witten [11], where a map (SW map) between non-commutative and
commutative gauge theories has been described, there has been a lot of activity also in the construction
of non-commutative phenomenological Lagrangians, for example various non-commutative standard
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model like Lagrangians have been proposed [12, 13]1. In particular in ref. [13], following the SW map
methods developed in refs. [16–19], a non-commutative standard model with SU(3) × SU(2) × U(1)
gauge group has been presented. These non-commutative models represent interesting generalizations
of the SM and hint at possible new physics. However they do not address the usual problem of the SM,
the presence of a plethora of free parameters mostly related to the ad hoc introduction of the Higgs and
Yukawa sectors in the theory. At this stage it is worth recalling that various schemes, with the Coset
Space Dimensional Reduction (CSDR) [20–24] being pioneer, were suggesting that a unification of the
gauge and Higgs sectors can be achieved in higher dimensions. Moreover the addition of fermions in the
higher-dimensional gauge theory leads naturally after CSDR to Yukawa couplings in four dimensions.
In the successes of the CSDR scheme certainly should be added the possibility to obtain chiral theories
in four dimensions [25–32] as well as softly broken supersymmetric or non-supersymmetric theories
starting from a supersymmetric gauge theory defined in higher dimensions [33].

The original plan of this paper was to present an overview covering the following subjects:
a) Quantum Reduction of Couplings and Finite Unified Theories
b) Classical Reduction of Couplings and Coset Space Dimensional Reduction
c) Renormalizable Unified Theories from Fuzzy Higher Dimensions [34–37]
The aim was to present an unified description of our current attempts to reduce the free parameters
of the Standard Model by using Finite Unification and extra dimensions. However we will cover only
the first and the third subjects given the fact that there exists extensive reviews covering a major part
of the second one [21, 22]. These two topics represent different attempts at reduction of couplings,
on one hand the Finite Unified Theories showing promising models with good phenomenology, on the
other hand, the Unified Theories from Fuzzy Higher Dimensions combining dimensional reduction and
reduction of couplings in a renormalizable theory.

2 Reduction of Couplings and Finiteness in N = 1 SUSY Gauge

Theories

Finite Unified Theories are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be
made finite even to all-loop orders, including the soft supersymmetry breaking sector. The method to
construct GUTs with reduced independent parameters [38–42] consists of searching for renormalization
group invariant (RGI) relations holding below the Planck scale, which in turn are preserved down
to the GUT scale. Of particular interest is the possibility to find RGI relations among couplings
that guarantee finitenes to all-orders in perturbation theory [43–48]. In order to achieve the latter
it is enough to study the uniqueness of the solutions to the one-loop finiteness conditions [43–48].
The constructed finite unified N = 1 supersymmetric SU(5) GUTs, using the above tools, predicted
correctly from the dimensionless sector (Gauge-Yukawa unification), among others, the top quark
mass [49,50]. The search for RGI relations and finiteness has been extended to the soft supersymmetry
breaking sector (SSB) of these theories [51, 52], which involves parameters of dimension one and two.
Eventually, the full theories can be made all-loop finite and their predictive power is extended to the
Higgs sector and the supersymmetric spectrum (s-spectrum).

Here let us review the main points and ideas concerning the reduction of couplings and finiteness

in N = 1 supersymmetric theories. A RGI relation among couplings gi, Φ(g1, · · · , gN ) = 0, has to
satisfy the partial differential equation
µ dΦ/dµ =

∑N
i=1 βi ∂Φ/∂gi = 0, where βi is the β-function of gi. There exist (N − 1) independent

Φ’s, and finding the complete set of these solutions is equivalent to solve the so-called reduction
equations (REs) [39–42], βg (dgi/dg) = βi , i = 1, · · · , N, where g and βg are the primary coupling
and its β-function. Using all the (N − 1)Φ’s to impose RGI relations, one can in principle express
all the couplings in terms of a single coupling g. The complete reduction, which formally preserves

1These SM actions are mainly considered as effective actions because they are not renormalizable. The effective
action interpretation is consistent with the SM in [13] being anomaly free [14]. Non-commutative phenomenology has
been discussed in [15].
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perturbative renormalizability, can be achieved by demanding a power series solution, whose uniqueness
can be investigated at the one-loop level.

Finiteness can be understood by considering a chiral, anomaly free, N = 1 globally supersymmetric
gauge theory based on a group G with gauge coupling constant g. The superpotential of the theory is
given by

W =
1

2
mij Φi Φj +

1

6
Cijk Φi Φj Φk , (1)

where mij (the mass terms) and Cijk (the Yukawa couplings) are gauge invariant tensors and the
matter field Φi transforms according to the irreducible representation Ri of the gauge group G.

The one-loop β-function of the gauge coupling g is given by

β(1)
g =

dg

dt
=

g3

16π2
[
∑

i

T (Ri) − 3C2(G) ] , (2)

where T (Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir of the adjoint representation
of the gauge group G. The β-functions of Cijk, by virtue of the non-renormalization theorem, are
related to the anomalous dimension matrix γj

i of the matter fields Φi as:

βijk
C =

d

dt
Cijk = Cijp

∑

n=1

1

(16π2)n
γk(n)

p + (k ↔ i) + (k ↔ j) . (3)

At one-loop level γj
i is given by

γ
j(1)
i =

1

2
Cipq Cjpq − 2 g2 C2(Ri)δ

j
i , (4)

where C2(Ri) is the quadratic Casimir of the representation Ri, and Cijk = C∗
ijk.

All the one-loop β-functions of the theory vanish if the β-function of the gauge coupling β
(1)
g , and

the anomalous dimensions γ
j(1)
i , vanish, i.e.

∑

i

T (Ri) = 3C2(G) ,
1

2
CipqC

jpq = 2δj
i g

2C2(Ri) . (5)

The conditions for finiteness for N = 1 field theories with SU(N) gauge symmetry are discussed
in [53], and the analysis of the anomaly-free and no-charge renormalization requirements for these
theories can be found in [54]. A very interesting result is that the conditions (5) are necessary and
sufficient for finiteness at the two-loop level [55, 56].

The one- and two-loop finiteness conditions (5) restrict considerably the possible choices of the
irreducible representations Ri for a given group G as well as the Yukawa couplings in the superpotential
(1). Note in particular that the finiteness conditions cannot be applied to the supersymmetric standard
model (SSM), since the presence of a U(1) gauge group is incompatible with the condition (5), due
to C2[U(1)] = 0. This leads to the expectation that finiteness should be attained at the grand unified
level only, the SSM being just the corresponding low-energy, effective theory.

The finiteness conditions impose relations between gauge and Yukawa couplings. Therefore, we have
to guarantee that such relations leading to a reduction of the couplings hold at any renormalization
point. The necessary, but also sufficient, condition for this to happen is to require that such relations
are solutions to the reduction equations (REs) to all orders. The all-loop order finiteness theorem of
ref. [43–46] is based on: (a) the structure of the supercurrent in N = 1 SYM and on (b) the non-
renormalization properties of N = 1 chiral anomalies [43–46]. Alternatively, similar results can be
obtained [47, 48, 57] using an analysis of the all-loop NSVZ gauge beta-function [58–60].
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3 Soft supersymmetry breaking and finiteness

The above described method of reducing the dimensionless couplings has been extended [51, 52] to
the soft supersymmetry breaking (SSB) dimensionful parameters of N = 1 supersymmetric theories.
Important results have been made [61–76] concerning the renormalization properties of the SSB param-
eters, based conceptually and technically on the work of ref. [65]. In this work the powerful supergraph
method [68–71] for studying supersymmetric theories has been applied to the softly broken ones by us-
ing the “spurion” external space-time independent superfields [72]. In the latter method a softly broken
supersymmetric gauge theory is considered as a supersymmetric one in which the various parameters
such as couplings and masses have been promoted to external superfields that acquire “vacuum expec-
tation values”. Based on this method the relations among the soft term renormalization and that of an
unbroken supersymmetric theory have been derived. In particular the β-functions of the parameters
of the softly broken theory are expressed in terms of partial differential operators involving the dimen-
sionless parameters of the unbroken theory. The key point in the strategy of refs. [61–76] in solving
the set of coupled differential equations so as to be able to express all parameters in a RGI way, was to
transform the partial differential operators involved to total derivative operators [61, 62]. It is indeed
possible to do this on the RGI surface which is defined by the solution of the reduction equations. In
addition it was found that RGI SSB scalar masses in Gauge-Yukawa unified models satisfy a universal
sum rule at one-loop [67]. This result was generalized to two-loops for finite theories [74–76], and then
to all-loops for general Gauge-Yukawa and Finite Unified Theories [63, 64].

In order to obtain a feeling of some of the above results, consider the superpotential given by (1)
along with the Lagrangian for SSB terms

−LSB =
1

6
hijk φiφjφk +

1

2
bij φiφj

+
1

2
(m2)ji φ∗ iφj +

1

2
M λλ + H.c.,

(6)

where the φi are the scalar parts of the chiral superfields Φi , λ are the gauginos and M their unified
mass. Since only finite theories are considered here, it is assumed that the gauge group is a simple group
and the one-loop β-function of the gauge coupling g vanishes. It is also assumed that the reduction
equations admit power series solutions of the form

Cijk = g
∑

n=0

ρijk
(n)g

2n . (7)

According to the finiteness theorem [43–46], the theory is then finite to all-orders in perturbation

theory, if, among others, the one-loop anomalous dimensions γ
j(1)
i vanish. The one- and two-loop

finiteness for hijk can be achieved by [77]

hijk = −MCijk + · · · = −Mρijk
(0) g + O(g5) . (8)

An additional constraint in the SSB sector up to two-loops [74–76], concerns the soft scalar masses
as follows

( m2
i + m2

j + m2
k )

MM † = 1 +
g2

16π2
∆(2) + O(g4) (9)

for i, j, k with ρijk
(0) 6= 0, where ∆(2) is the two-loop correction

∆(2) = −2
∑

l

[(m2
l /MM †) − (1/3)] T (Rl), (10)

which vanishes for the universal choice [77], i.e. when all the soft scalar masses are the same at the
unification point.

If we know higher-loop β-functions explicitly, we can follow the same procedure and find higher-
loop RGI relations among SSB terms. However, the β-functions of the soft scalar masses are explicitly
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known only up to two loops. In order to obtain higher-loop results, we need something else instead of
knowledge of explicit β-functions, e.g. some relations among β-functions.

By means of the spurion technique [68–72] it is possible to derive the following all-loop relations
among SSB β-functions, [61–76]

βM = 2O
(

βg

g

)

, (11)

βijk
h = γi

lh
ljk + γj

lh
ilk + γk

lh
ijl

−2γi
1lC

ljk − 2γj
1 lC

ilk − 2γk
1 lC

ijl , (12)

(βm2)ij =

[

∆ + X
∂

∂g

]

γi
j , (13)

O =

(

Mg2 ∂

∂g2
− hlmn ∂

∂C lmn

)

, (14)

∆ = 2OO∗ + 2|M |2g2 ∂

∂g2
(15)

+C̃lmn
∂

∂Clmn
+ C̃ lmn ∂

∂C lmn
, (16)

where (γ1)
i
j = Oγi

j , Clmn = (C lmn)∗, and

C̃ijk = (m2)ilC
ljk + (m2)j lC

ilk + (m2)klC
ijl . (17)

It was also found [73] that the relation

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d ln g
, (18)

among couplings is all-loop RGI. Furthermore, using the all-loop gauge β-function of Novikov et al.

[58–60] given by

βNSVZ
g =

g3

16π2

[∑

l T (Rl)(1 − γl/2) − 3C(G)

1 − g2C(G)/8π2

]

, (19)

it was found the all-loop RGI sum rule [63, 64],

m2
i + m2

j + m2
k = |M |2{ 1

1 − g2C(G)/(8π2)

d ln Cijk

d ln g

+
1

2

d2 ln Cijk

d(ln g)2
} +

∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d ln Cijk

d ln g
.

(20)

In addition the exact-β-function for m2 in the NSVZ scheme has been obtained [63, 64] for the first
time and is given by

βNSVZ
m2

i

=

[

|M |2{ 1

1 − g2C(G)/(8π2)

d

d ln g
+

1

2

d2

d(ln g)2
}

+
∑

l

m2
l T (Rl)

C(G) − 8π2/g2

d

d ln g

]

γNSVZ
i .

(21)

4 Finite Unified Theories

Finite Unified Theories (FUTs) have always attracted interest for their intriguing mathematical prop-
erties and their predictive power. One very important result is that the one-loop finiteness conditions
(5) are sufficient to guarantee two-loop finiteness [55, 56]. A classification of possible one-loop finite
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models was done independently by several authors [78], and the analysis of the anomaly-free and no-
charge renormalization requirements for these theories can be found in [53]. The first one and two-loop
finite SU(5) model was presented in [79], and shortly afterwards the conditions for finiteness in the
soft SUSY-breaking sector at one-loop [80] were given. In [81] a one and two-loop finite SU(5) model
was presented where the rotation of the Higgs sector was proposed as a way of making it realistic. The
first all-loop finite theory was studied in [49,50], without taking into account the soft breaking terms.
Finite soft breaking terms and the proof that one-loop finiteness in the soft terms also implies two-loop
finiteness was done in [77]. The inclusion of soft breaking terms in a realistic model was done in [82]
and their finiteness to all-loops studied in [83], although the universality of the soft breaking terms lead
to a charged LSP. This fact was also noticed in [84], where the inclusion of an extra parameter in the
Higgs sector was introduced to alleviate it. The derivation of the sum-rule in the soft supersymmetry
breaking sector and the proof that it can be made all-loop finite were done in [63, 64, 74–76, 79, 81],
allowing thus for the construction of all-loop finite realistic models.

From the classification of theories with vanishing one-loop gauge β function [78], one can easily
see that there exist only two candidate possibilities to construct SU(5) GUTs with three generations.
These possibilities require that the theory should contain as matter fields the chiral supermultiplets
5, 5, 10, 5, 24 with the multiplicities (6, 9, 4, 1, 0) and (4, 7, 3, 0, 1), respectively. Only the second
one contains a 24-plet which can be used to provide the spontaneous symmetry breaking (SB) of
SU(5) down to SU(3) × SU(2) × U(1). For the first model one has to incorporate another way, such
as the Wilson flux breaking mechanism to achieve the desired SB of SU(5) [49, 50]. Therefore, for a
self-consistent field theory discussion we would like to concentrate only on the second possibility. Thus,
we will examine Finite Unified theories with SU(5) gauge group, where the reduction of couplings has
been applied to the third generation of quarks and leptons.

The particle content of the models we will study consists of the following supermultiplets: three
(5 + 10), needed for each of the three generations of quarks and leptons, four (5 + 5) and one 24

considered as Higgs supermultiplets. When the gauge group of the finite GUT is broken the theory is
no longer finite, and we will assume that we are left with the MSSM.

A predictive Gauge-Yukawa unified SU(5) model which is finite to all orders, in addition to the
requirements mentioned already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δj

i .

2. Three fermion generations, in the irreducible representations
5i,10i (i = 1, 2, 3), which obviously should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs quintet and
anti-quintet, which couple to the third generation.

In the following we discuss two versions of the all-order finite model. The model of ref. [49, 50],
which will be labeled A, and a slight variation of this model (labeled B), which can also be obtained
from the class of the models suggested in ref. [61, 62] with a modification to suppress non-diagonal
anomalous dimensions.

The superpotential which describes the two models takes the form [49,50, 74–76]

W =

3
∑

i=1

[
1

2
gu
i 10i10iHi + gd

i 10i5i H i ]

+ gu
23 102103H4 + gd

23 10253 H4 + gd
32 10352 H4

+

4
∑

a=1

gf
a Ha 24Ha +

gλ

3
(24)3 , (22)

where Ha and Ha (a = 1, . . . , 4) stand for the Higgs quintets and anti-quintets.
We will investigate two realizations of the model, labelled A and B. The main difference between

model A and model B is that two pairs of Higgs quintets and anti-quintets couple to the 24 in B, so
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51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z7 4 1 2 1 2 4 5 3 6 -5 -3 -6 0 0 0

Z3 0 0 0 1 2 0 1 2 0 -1 -2 0 0 0 0

Z2 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Table 1: Charges of the Z7 × Z3 × Z2 symmetry for Model FUTA.

that it is not necessary to mix them with H4 and H4 in order to achieve the triplet-doublet splitting
after the symmetry breaking of SU(5) [74–76]. Thus, although the particle content is the same, the
solutions to Eq.(5) and the sum rules are different, which will reflect in the phenomenology, as we will
see.

4.1 FUTA

After the reduction of couplings the symmetry of the superpotential W (22) is enhanced. For model A

one finds that the superpotential has the Z7 ×Z3 ×Z2 discrete symmetry with the charge assignment
as shown in Table 1, and with the following superpotential

W =

3
∑

i=1

[
1

2
gu
i 10i10iHi + gd

i 10i5i H i ] + gf
4 H4 24H4 +

gλ

3
(24)3 , (23)

The non-degenerate and isolated solutions to γ
(1)
i = 0 for model FUTA, which are the boundary

conditions for the Yukawa couplings at the GUT scale, are:

(gu
1 )2 =

8

5
g2 , (gd

1)2 =
6

5
g2 , (gu

2 )2 = (gu
3 )2 =

8

5
g2 , (24)

(gd
2)2 = (gd

3)2 =
6

5
g2 , (gu

23)
2 = 0 , (gd

23)
2 = (gd

32)
2 = 0 ,

(gλ)2 =
15

7
g2 , (gf

2 )2 = (gf
3 )2 = 0 , (gf

1 )2 = 0 , (gf
4 )2 = g2 .

In the dimensionful sector, the sum rule gives us the following boundary conditions at the GUT scale
for this model [74–76,79, 81]:

m2
Hu

+ 2m2
10

= m2
Hd

+ m2
5

+ m2
10

= M2 , (25)

and thus we are left with only three free parameters, namely m
5
≡ m

53
, m10 ≡ m103

and M .

4.2 FUTB

Also in the case of FUTB the symmetry is enhanced after the reduction of couplings. The superpo-
tential has now a Z4 × Z4 × Z4 symmetry with charges as shown in Table 2 and with the following
superpotential

W =

3
∑

i=1

[
1

2
gu
i 10i10iHi + gd

i 10i5i H i ] + gu
23 102103H4 (26)

+gd
23 10253 H4 + gd

32 10352 H4 + gf
2 H2 24H2 + gf

3 H3 24H3 +
gλ

3
(24)3 ,

For this model the non-degenerate and isolated solutions to γ
(1)
i = 0 give us:

(gu
1 )2 =

8

5
g2 , (gd

1)2 =
6

5
g2 , (gu

2 )2 = (gu
3 )2 =

4

5
g2 , (27)
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51 52 53 101 102 103 H1 H2 H3 H4 H1 H2 H3 H4 24

Z4 1 0 0 1 0 0 2 0 0 0 -2 0 0 0 0

Z4 0 1 0 0 1 0 0 2 0 3 0 -2 0 -3 0

Z4 0 0 1 0 0 1 0 0 2 3 0 0 -2 -3 0

Table 2: Charges of the Z4 × Z4 × Z4 symmetry for Model FUTB.

(gd
2)2 = (gd

3)2 =
3

5
g2 , (gu

23)
2 =

4

5
g2 , (gd

23)
2 = (gd

32)
2 =

3

5
g2 ,

(gλ)2 =
15

7
g2 , (gf

2 )2 = (gf
3 )2 =

1

2
g2 , (gf

1 )2 = 0 , (gf
4 )2 = 0 ,

and from the sum rule we obtain:

m2
Hu

+ 2m2
10

= M2 , m2
Hd

− 2m2
10

= −M2

3
,

m2
5

+ 3m2
10

=
4M2

3
, (28)

i.e., in this case we have only two free parameters m10 ≡ m103
and M for the dimensionful sector.

As already mentioned, after the SU(5) gauge symmetry breaking we assume we have the MSSM,
i.e. only two Higgs doublets. This can be achieved by introducing appropriate mass terms that allow
to perform a rotation of the Higgs sector [49, 50, 79, 81, 85], in such a way that only one pair of Higgs
doublets, coupled mostly to the third family, remains light and acquire vacuum expectation values. To
avoid fast proton decay the usual fine tuning to achieve doublet-triplet splitting is performed. Notice
that, although similar, the mechanism is not identical to minimal SU(5), since we have an extended
Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken we are left with the MSSM, with
the boundary conditions for the third family given by the finiteness conditions, while the other two
families are basically decoupled.

5 Predictions of low energy parameters

Since the gauge symmetry is spontaneously broken below MGUT, the finiteness conditions do not
restrict the renormalization properties at low energies, and all it remains are boundary conditions on
the gauge and Yukawa couplings (24), the h = −MC relation, and the soft scalar-mass sum rule (9)
at MGUT, as applied in the two models. Thus we examine the evolution of these parameters according
to their RGEs up to two-loops for dimensionless parameters and at one-loop for dimensionful ones
with the relevant boundary conditions. Below MGUT their evolution is assumed to be governed by
the MSSM. We further assume a unique supersymmetry breaking scale Ms (which we define as the
geometric mean of the stop masses) and therefore below that scale the effective theory is just the SM.

We now present the comparison of the predictions of the four models with the experimental data,
see ref. [86] for more details, starting with the heavy quark masses. In fig.1 we show the FUTA and
FUTB predictions for Mtop and mbot(MZ) as a function of the unified gaugino mass M , for the two
cases µ < 0 and µ > 0. In the value of the bottom mass mbot, we have included the corrections coming
from bottom squark-gluino loops and top squark-chargino loops [87]. We give the predictions for the
running bottom quark mass evaluated at MZ , mbot(MZ) = 2.825 ± 0.1 [88], to avoid the large QCD
uncertainties inherent for the pole mass. The value of mbot depends strongly on the sign of µ due to
the above mentioned radiative corrections. For both models A and B the values for µ > 0 are above
the central experimental value, with mbot(MZ) ∼ 4.0− 5.0 GeV. For µ < 0, on the other hand, model
B has overlap with the experimental allowed values, mbot(MZ) ∼ 2.5 − 2.8 GeV, whereas for model
A, mbot(MZ) ∼ 1.5 − 2.6 GeV, there is only a small region of allowed parameter space at two sigma
level, and only for large values of M . This clearly selects the negative sign of µ.
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Figure 1: The bottom quark mass at the Z boson scale (upper) and top quark pole mass (lower plot)
are shown as function of M for both models.

The predictions for the top quark mass Mtop are ∼ 183 and ∼ 172 GeV in the models A and B

respectively, as shown in the lower plot of fig. 1. Comparing these predictions with the most recent
experimental value Mexp

top = (170.9 ± 1.8) GeV [89], and recalling that the theoretical values for Mtop

may suffer from a correction of ∼ 4% [76], we see that clearly model B is singled out. In addition
the value of tan β is found to be tan β ∼ 54 and ∼ 48 for models A and B, respectively. Thus from
the comparison of the predictions of the two models with experimental data only FUTB with µ < 0
survives.

We now analyze the impact of further low-energy observables on the model FUTB with µ < 0.
In the case where all the soft scalar masses are universal at the unfication scale, there is no region of
M below O(few TeV) in which mτ̃ > mχ0 is satisfied (where mτ̃ is the lightest τ̃ mass, and mχ0 the
lightest neutralino mass). But once the universality condition is relaxed this problem can be solved
naturally, thanks to the sum rule (9). Using this equation and imposing the conditions of (a) successful
radiative electroweak symmetry breaking, (b) m2

τ̃ > 0 and (c) mτ̃ > mχ0 , a comfortable parameter
space is found for FUTB with µ < 0 (and also for FUTA and both signs of µ).

As additional constraints we consider the following observables: the rare b decays BR(b → sγ)
and BR(Bs → µ+µ−), the lightest Higgs boson mass as well as the density of cold dark matter in the
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Figure 2: The lightest Higgs mass, Mh, as function of M for the model FUTB with µ < 0, see text.

Universe, assuming it consists mainly of neutralinos. More details and a complete set of references can
be found in ref. [86].

For the branching ratio BR(b → sγ), we take the present experimental value estimated by the
Heavy Flavour Averaging Group (HFAG) is [90–92]

BR(b → sγ) = (3.55 ± 0.24+0.09
−0.10 ± 0.03) × 10−4, (29)

where the first error is the combined statistical and uncorrelated systematic uncertainty, the latter two
errors are correlated systematic theoretical uncertainties and corrections respectively.

For the branching ratio BR(Bs → µ+µ−), the SM prediction is at the level of 10−9, while the
present experimental upper limit from the Tevatron is 5.8 × 10−8 at the 95% C.L. [93], providing the
possibility for the MSSM to dominate the SM contribution.

Concerning the lightest Higgs boson mass, Mh, the SM bound of 114.4 GeV [94, 95] can be used.
For the prediction we use the code FeynHiggs [96–99].

The lightest supersymmetric particle (LSP) is an excellent candidate for cold dark matter (CDM) [100,
101], with a density that falls naturally within the range

0.094 < ΩCDMh2 < 0.129 (30)

favoured by a joint analysis of WMAP and other astrophysical and cosmological data [102, 103]. As-
suming that the cold dark matter is composed predominantly of LSPs, the determination of ΩCDMh2

imposes very strong constraints on the MSSM parameter space, and we find that no FUT model points
fulfill the strict bound of (30). On the other hand, many model parameters would yield a very large
value of ΩCDM. It should be kept in mind that somewhat larger values might be allowed due to pos-
sible uncertainties in the determination of the SUSY spectrum (as they might arise at large tan β, see
below). Therefore, in order to get an impression of the possible impact of the CDM abundance on the
collider phenomenology in our model, we will analyze the case that the LSP does contribute to the
CDM density, and apply a more loose bound of

ΩCDMh2 < 0.3 . (31)

Notice that lower values than the ones permitted by (30) are naturally allowed if another particle than
the lightest neutralino constitutes CDM. For our evaluation we have used the code MicroMegas [104,
105].

The prediction for Mh of FUTB with µ < 0 is shown in fig. 2. The constraints from the two
B physics observables are taken into account. In addition the CDM constraint (evaluated with
Micromegas [104, 105]) is fulfilled for the lighter (green) points in the plot, see ref. [86] for details.
The lightest Higgs mass ranges in

Mh ∼ 121 − 126 GeV, (32)
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where the uncertainty comes from variations of the soft scalar masses, and from finite (i.e. not loga-
rithmically divergent) corrections in changing renormalization scheme. To this value one has to add
±3 GeV coming from unknown higher order corrections [98]. We have also included a small variation,
due to threshold corrections at the GUT scale, of up to 5% of the FUT boundary conditions. Thus,
taking into account the B physics constraints (and possibly the CDM constraints) results naturally in
a light Higgs boson that fulfills the LEP bounds [94, 95].

In the same way the whole SUSY particle spectrum can be derived. The resulting SUSY masses
for FUTB with µ < 0 are rather large. The lightest SUSY particle starts around 500 GeV, with the
rest of the spectrum being very heavy. The observation of SUSY particles at the LHC or the ILC will
only be possible in very favorable parts of the parameter space. For most parameter combination only
a SM-like light Higgs boson in the range of eq. (32) can be observed.

We note that with such a heavy SUSY spectrum the anomalous magnetic moment of the muon,
(g − 2)µ (with aµ ≡ (g−2)µ/2), gives only a negligible correction to the SM prediction. The comparison
of the experimental result and the SM value [106]

aexp
µ − atheo

µ = (27.5 ± 8.4) × 10−10. (33)

would disfavor FUTB with µ < 0 by about 3σ. However, since the SM is not regarded as excluded
by (g − 2)µ, we still see FUTB with µ < 0 as the only surviving model. A more detailed analysis can
be found in [86].

6 Concluding remarks on the Realistic Finite Unified Theories

The finiteness conditions in the supersymmetric part of the unbroken theory lead to relations among
the dimensionless couplings, i.e. gauge-Yukawa unification. In addition the finiteness conditions in the
SUSY-breaking sector of the theories lead to a tremendous reduction of the number of the independent
soft SUSY-breaking parameters leaving one model (A) with three and another (B) with two free pa-
rameters. Therefore the finiteness-constrained MSSM consists of the well known MSSM with boundary
conditions at the Grand Unification scale for its various dimensionless and dimensionful parameters
inherited from the all-loop finiteness unbroken theories. Obviously these lead to an extremely restricted
and, consequently, very predictive parameter space of the MSSM.

7 Unified Theories from Fuzzy Higher Dimensions

Coset Space Dimensional Reduction (CSDR) [20–33] is a unification scheme for obtaining realistic
particle models from gauge theories on higher D-dimensional spaces MD. It suggests that a unification
of the gauge and Higgs sectors of the Standard Model can be achieved in higher than four dimensions.
Moreover the addition of fermions in the higher-dimensional gauge theory leads naturally, after CSDR,
to Yukawa couplings in four dimensions. We present a study of the CSDR in the non-commutative
context which sets the rules for constructing new particle models that might be phenomenologically
interesting. One could study CSDR with the whole parent space MD being non-commutative or with
just non-commutative Minkowski space or non-commutative internal space. We specialize here to this
last situation and therefore eventually we obtain Lorentz covariant theories on commutative Minkowski
space. We further specialize to fuzzy non-commutativity, i.e. to matrix type non-commutativity.
Thus, following [34,36,37], we consider non-commutative spaces like those studied in refs. [2,5–9] and
implementing the CSDR principle on these spaces we obtain the rules for constructing new particle
models.

Next we reverse the above approach [35] and examine how a four dimensional gauge theory dy-
namically develops higher dimensions. The very concept of dimension therefore gets an extra, richer
dynamical perspective. We present a simple field-theoretical model which realizes the above ideas. It is
defined as a renormalizable SU(N) gauge theory on four dimensional Minkowski space M4, containing
3 scalars in the adjoint of SU(N) that transform as vectors under an additional global SO(3) symmetry
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with the most general renormalizable potential. We then show that the model dynamically develops
fuzzy extra dimensions, more precisely a fuzzy sphere S2

N . The appropriate interpretation is therefore
as gauge theory on M4 × S2

N . The low-energy effective action is that of a four dimensional gauge
theory on M4, whose gauge group and field content is dynamically determined by compactification
and dimensional reduction on the internal sphere S2

N . An interesting and rich pattern of spontaneous
symmetry breaking appears, breaking the original SU(N) gauge symmetry down to either SU(n) or
SU(n1)×SU(n2)×U(1). The latter case is the generic one, and implies also a monopole flux induced
on the fuzzy sphere. The values of n1 and n2 are determined dynamically.

We find moreover explicitly the tower of massive Kaluza-Klein modes corresponding to the effec-
tive geometry, which justifies the interpretation as a compactified higher-dimensional gauge theory.
Nevertheless, the model is renormalizable.

A similar but different mechanism of dynamically generating extra dimensions has been proposed
some years ago in [107], known under the name of “deconstruction”. In this context, renormalizable
four dimensional asymptotically free gauge theories were considered, which develop a “lattice-like” fifth
dimension. This idea attracted considerable interest. Our model is quite different, and very simple:
The SU(N) gauge theory is shown to develop fuzzy extra dimensions through a standard symmetry
breaking mechanism.

8 The Fuzzy Sphere

8.1 Ordinary and Fuzzy spherical harmonics

Let us start by recalling how to describe fields on the 2-sphere. The 2-sphere is a two-dimensional
manifold embedded in R

3, with a global SO(3) ∼ SU(2) isometry group, defined by the equation

x2
1 + x2

2 + x2
3 = R2 (34)

for a coordinate basis xâ in R
3. We define the coordinates xâ in terms of the spherical coordinates

ya = (θ, φ) and radius R by,

x1 = R sin θ cos φ, (35)

x2 = R sin θ sinφ, (36)

x3 = R cos θ, (37)

which dictates the metric of the 2-sphere,

ds2 = R2 dθ2 + R2 sin2θ dφ2. (38)

The generators of SU(2) ∼ SO(3) are the angular momentum operators Li,

Lâ = −iε
âb̂ĉ

x
b̂
∂ĉ (39)

In terms of spherical coordinates the angular momentum operators are

L1 = i sinφ
∂

∂θ
+ i cos φ cot θ

∂

∂φ
, (40)

L2 = −i cos φ
∂

∂θ
+ i sin φ cot θ

∂

∂φ
, (41)

L3 = −i
∂

∂φ
, (42)

which we can summarize as
Lâ = −ika

â∂a (43)

The metric tensor can also be expressed in terms of the Killing vectors ka
â (defined by the above

equations) as

gab =
1

R2
ka

âkb
â. (44)
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We can expand any function on the 2-sphere in terms of the eigenfunctions of the 2-sphere,

a(θ, φ) =

∞
∑

l=0

l
∑

m=−l

almYlm(θ, φ), (45)

where alm is a complex coefficient and Ylm(θ, φ) are the spherical harmonics, which satisfy the equation

L2Ylm = −R2∆S2Ylm = l(l + 1)Ylm, (46)

where ∆S2 is the scalar Laplacian on the 2-sphere

∆S2 =
1√
g

∂a(g
ab√g ∂b). (47)

The spherical harmonics have an eigenvalue µ ∼ l(l+1) for integer l = 0, 1, . . . , with degeneracy 2l+1.
The orthogonality condition of the spherical harmonics is

∫

dΩ Y †
lmYl′m′ = δll′ δmm′ , (48)

where dΩ = sin θ dθdφ.
The spherical harmonics can be expressed in terms of the cartesian coordinates xâ (with â = 1, 2, 3)

of a unit vector in R
3,

Ylm(θ, φ) =
∑

~a

f
(lm)
â1...âl

xâ1 . . . xâl (49)

where f
(lm)
â1...âl

is a traceless symmetric tensor of SO(3) with rank l.
Similarly we can expand N × N matrices on a sphere as,

â =
N−1
∑

l=0

l
∑

m=−l

almŶlm (50)

Ŷlm = R−l
∑

~a

f
(lm)
â1...âl

x̂â1 . . . x̂âl , (51)

where x̂â = 2R√
N2−1

X
(N)
â are the generators of SU(2) in the N -dimensional representation and f

(lm)
â1...âl

is the same tensor as in (49). The matrices Ŷlm are known as fuzzy spherical harmonics for reasons
explained in the next subsection. They obey the orthonormality condition

TrN

(

Ŷ †
lmŶl′m′

)

= δll′ δmm′ . (52)

There is an obvious relation between equations (45) and (50), namely

â =

N−1
∑

l=0

l
∑

m=−l

almŶlm → a(θ, φ) =

N−1
∑

l=0

l
∑

m=−l

almYlm(θ, φ). (53)

Notice that the expansion in spherical harmonics is truncated at N − 1 reflecting the finite number of
degrees of freedom in the matrix â. This allows the consistent definition of a matrix approximation of
the sphere known as fuzzy sphere.

8.2 The Matrix Geometry of the fuzzy sphere

According to the above discussion the fuzzy sphere [2,108] is a matrix approximation of the usual sphere
S2. The algebra of functions on S2 (for example spanned by the spherical harmonics) as explained
in the previous section is truncated at a given frequency and thus becomes finite dimensional. The
truncation has to be consistent with the associativity of the algebra and this can be nicely achieved

13



relaxing the commutativity property of the algebra. The fuzzy sphere is the “space” described by
this non-commutative algebra. The algebra itself is that of N × N matrices. More precisely, the
algebra of functions on the ordinary sphere can be generated by the coordinates of R3 modulo the
relation

∑3
â=1 xâxâ = r2. The fuzzy sphere S2

N at fuzziness level N − 1 is the non-commutative
manifold whose coordinate functions iXâ are N ×N hermitian matrices proportional to the generators
of the N -dimensional representation of SU(2). They satisfy the condition

∑3
â=1 XâXâ = αr2 and the

commutation relations
[Xâ,Xb̂

] = C
âb̂ĉ

Xĉ , (54)

where C
âb̂ĉ

= ε
âb̂ĉ

/r while the proportionality factor α goes as N2 for N large. Indeed it can be proven
that for N → ∞ one obtains the usual commutative sphere.

On the fuzzy sphere there is a natural SU(2) covariant differential calculus. This calculus is three-
dimensional and the derivations eâ along Xâ of a function f are given by eâ(f) = [Xâ, f ] . Accordingly
the action of the Lie derivatives on functions is given by

Lâf = [Xâ, f ] ; (55)

these Lie derivatives satisfy the Leibniz rule and the SU(2) Lie algebra relation

[Lâ,Lb̂
] = C

âb̂ĉ
Lĉ. (56)

In the N → ∞ limit the derivations eâ become eâ = C
âb̂ĉ

xb̂∂ ĉ and only in this commutative limit the
tangent space becomes two-dimensional. The exterior derivative is given by

df = [Xâ, f ]θâ (57)

with θâ the one-forms dual to the vector fields eâ, < eâ, θ
b̂ >= δb̂

â. The space of one-forms is generated
by the θâ’s in the sense that for any one-form ω =

∑

i fidhi ti we can always write ω =
∑3

â=1 ωâθ
â

with given functions ωâ depending on the functions fi, hi and ti. The action of the Lie derivatives Lâ

on the one-forms θb̂ explicitly reads

Lâ(θ
b̂) = C

âb̂ĉ
θĉ . (58)

On a general one-form ω = ωâθ
â we have L

b̂
ω = L

b̂
(ωâθ

â) =
[

X
b̂
, ωâ

]

θâ − ωâC
â

b̂ĉ
θĉ and therefore

(L
b̂
ω)â =

[

X
b̂
, ωâ

]

− ωĉC
ĉ

b̂â
; (59)

this formula will be fundamental for formulating the CSDR principle on fuzzy cosets.
The differential geometry on the product space Minkowski times fuzzy sphere, M4 × S2

N , is easily
obtained from that on M4 and on S2

N . For example a one-form A defined on M4 × S2
N is written as

A = Aµdxµ + Aâθ
â (60)

with Aµ = Aµ(xµ,Xâ) and Aâ = Aâ(x
µ,Xâ).

One can also introduce spinors on the fuzzy sphere and study the Lie derivative on these spinors.
Although here we have sketched the differential geometry on the fuzzy sphere, one can study other
(higher-dimensional) fuzzy spaces (e.g. fuzzy CPM) and with similar techniques their differential
geometry.

9 Dimensional Reduction of Fuzzy Extra Dimensions

9.1 Actions in higher dimensions seen as four-dimensional actions (Expansion in
Kaluza-Klein modes)

First we consider on M4 × (S/R)F a non-commutative gauge theory with gauge group G = U(P ) and
examine its four-dimensional interpretation. (S/R)F is a fuzzy coset, for example the fuzzy sphere S2

N .
The action is

AY M =
1

4g2

∫

d4x kTr trG FMNFMN , (61)
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where kTr denotes integration over the fuzzy coset (S/R)F described by N × N matrices; here the
parameter k is related to the size of the fuzzy coset space. For example for the fuzzy sphere we have
r2 =

√
N2 − 1πk [2]. In the N → ∞ limit kTr becomes the usual integral on the coset space. For finite

N , Tr is a good integral because it has the cyclic property Tr(f1 . . . fp−1fp) = Tr(fpf1 . . . fp−1). It is
also invariant under the action of the group S, that is infinitesimally given by the Lie derivative. In the
action (61) trG is the gauge group G trace. The higher-dimensional field strength FMN , decomposed
in four-dimensional space-time and extra-dimensional components, reads as follows (Fµν , F

µb̂
, F

âb̂
) ;

explicitly the various components of the field strength are given by

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν ], (62)

Fµâ = ∂µAâ − [Xâ, Aµ] + [Aµ, Aâ],

F
âb̂

= [Xâ, Ab̂
] − [X

b̂
, Aâ] + [Aâ, Ab̂

] − C ĉ

âb̂
Aĉ. (63)

Under an infinitesimal G gauge transformation λ = λ(xµ,X â) we have

δAâ = −[Xâ, λ] + [λ,Aâ] , (64)

thus FMN is covariant under local G gauge transformations: FMN → FMN + [λ, FMN ]. This is an
infinitesimal abelian U(1) gauge transformation if λ is just an antihermitian function of the coordinates
xµ,X â while it is an infinitesimal non-abelian U(P ) gauge transformation if λ is valued in Lie(U(P )),
the Lie algebra of hermitian P×P matrices. In the following we will always assume Lie(U(P )) elements
to commute with the coordinates X â. In fuzzy/non-commutative gauge theory and in Fuzzy-CSDR a
fundamental role is played by the covariant coordinate,

ϕâ ≡ Xâ + Aâ . (65)

This field transforms indeed covariantly under a gauge transformation, δ(ϕâ) = [λ,ϕâ] . In terms of ϕ
the field strength in the non-commutative directions reads,

Fµâ = ∂µϕâ + [Aµ, ϕâ] = Dµϕâ, (66)

F
âb̂

= [ϕâ, ϕb̂
] − C ĉ

âb̂
ϕĉ ; (67)

and using these expressions the action reads

AY M =

∫

d4xTr trG

(

k

4g2
F 2

µν +
k

2g2
(Dµϕâ)

2 − V (ϕ)

)

, (68)

where the potential term V (ϕ) is the F
âb̂

kinetic term (in our conventions F
âb̂

is antihermitian so that
V (ϕ) is hermitian and non-negative)

V (ϕ) = − k

4g2
Tr trG

∑

âb̂

F
âb̂

F
âb̂

= − k

4g2
Tr trG

(

[ϕâ, ϕb̂
][ϕâ, ϕb̂] − 4C

âb̂ĉ
ϕâϕb̂ϕĉ + 2r−2ϕ2

)

. (69)

The action (68) is naturally interpreted as an action in four dimensions. The infinitesimal G gauge
transformation with gauge parameter λ(xµ,X â) can indeed be interpreted just as an M4 gauge trans-
formation. We write

λ(xµ,X â) = λα(xµ,X â)T α = λh,α(xµ)T hT α , (70)

where T α are hermitian generators of U(P ), λα(xµ,X â) are n×n antihermitian matrices and thus are
expressible as λ(xµ)α,hT h, where T h are antihermitian generators of U(n). The fields λ(xµ)α,h, with
h = 1, . . . n2, are the Kaluza-Klein modes of λ(xµ,X â)α. We now consider on equal footing the indices
h and α and interpret the fields on the r.h.s. of (70) as one field valued in the tensor product Lie
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algebra Lie(U(n)) ⊗ Lie(U(P )). This Lie algebra is indeed Lie(U(nP )) (the (nP )2 generators T hT α

being nP × nP antihermitian matrices that are linear independent). Similarly we rewrite the gauge
field Aν as

Aν(x
µ,X â) = Aα

ν (xµ,X â)T α = Ah,α
ν (xµ)T hT α, (71)

and interpret it as a Lie(U(nP )) valued gauge field on M4, and similarly for ϕâ. Finally Tr trG is the
trace over U(nP ) matrices in the fundamental representation.

Up to now we have just performed a ordinary fuzzy dimensional reduction. Indeed in the com-
mutative case the expression (68) corresponds to rewriting the initial lagrangian on M4 × S2 using
spherical harmonics on S2. Here the space of functions is finite dimensional and therefore the infinite
tower of modes reduces to the finite sum given by Tr.

9.2 Non-trivial Dimensional reduction in the case of Fuzzy Extra Dimensions

Next we reduce the number of gauge fields and scalars in the action (68) by applying the Coset Space
Dimensional Reduction (CSDR) scheme. Since SU(2) acts on the fuzzy sphere (SU(2)/U(1))F , and
more in general the group S acts on the fuzzy coset (S/R)F , we can state the CSDR principle in
the same way as in the continuum case, i.e. the fields in the theory must be invariant under the
infinitesimal SU(2), respectively S, action up to an infinitesimal gauge transformation

L
b̂
φ = δW

b̂
φ = W

b̂
φ, (72)

L
b̂
A = δW

b̂
A = −DW

b̂
, (73)

where A is the one-form gauge potential A = Aµdxµ + Aâθ
â, and W

b̂
depends only on the coset

coordinates X â and (like Aµ, Aa) is antihermitian. We thus write W
b̂
= W α

b̂
T α, α = 1, 2 . . . P 2, where

T i are hermitian generators of U(P ) and (W i
b )

† = −W i
b , here † is hermitian conjugation on the X â’s.

In terms of the covariant coordinate ϕ
d̂

= X
d̂

+ A
d̂

and of

ωâ ≡ Xâ − Wâ , (74)

the CSDR constraints assume a particularly simple form, namely

[ω
b̂
, Aµ] = 0, (75)

C
b̂d̂ê

ϕê = [ω
b̂
, ϕ

d̂
]. (76)

In addition we have a consistency condition following from the relation [Lâ,Lb̂
] = C ĉ

âb̂
Lĉ:

[ωâ, ωb̂
] = C ĉ

âb̂
ωc, (77)

where ωâ transforms as ωâ → ω′
â = gωâg

−1. One proceeds in a similar way for the spinor fields
[34, 36, 37].

9.2.1 Solving the CSDR constraints for the fuzzy sphere

We consider (S/R)F = S2
N , i.e. the fuzzy sphere, and to be definite at fuzziness level N − 1 (N × N

matrices). We study here the basic example where the gauge group is G = U(1). In this case

the ωâ = ωâ(X
b̂) appearing in the consistency condition (77) are N × N antihermitian matrices

and therefore can be interpreted as elements of Lie(U(N)). On the other hand the ωâ satisfy the
commutation relations (77) of Lie(SU(2)). Therefore in order to satisfy the consistency condition
(77) we have to embed Lie(SU(2)) in Lie(U(N)). Let T h with h = 1, . . . , (N)2 be the generators
of Lie(U(N)) in the fundamental representation, we can always use the convention h = (â, u) with
â = 1, 2, 3 and u = 4, 5, . . . , N2 where the T â satisfy the SU(2) Lie algebra,

[T â, T b̂] = C âb̂
ĉT

ĉ . (78)
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Then we define an embedding by identifying

ωâ = Tâ. (79)

The constraint (75), [ω
b̂
, Aµ] = 0, then implies that the four-dimensional gauge group K is the cen-

tralizer of the image of SU(2) in U(N), i.e.

K = CU(N)(SU((2))) = SU(N − 2) × U(1) × U(1) ,

where the last U(1) is the U(1) of U(N) ≃ SU(N) × U(1). The functions Aµ(x,X) are arbitrary
functions of x but the X dependence is such that Aµ(x,X) is Lie(K) valued instead of Lie(U(N)), i.e.
eventually we have a four-dimensional gauge potential Aµ(x) with values in Lie(K). Concerning the
constraint (76), it is satisfied by choosing

ϕâ = rϕ(x)ωâ , (80)

i.e. the unconstrained degrees of freedom correspond to the scalar field ϕ(x) which is a singlet under
the four-dimensional gauge group K.

The choice (79) defines one of the possible embedding of Lie(SU(2)) in Lie(U(N)). For example,
we could also embed Lie(SU(2)) in Lie(U(N)) using the irreducible N -dimensional rep. of SU(2), i.e.
we could identify ωâ = Xâ. The constraint (75) in this case implies that the four-dimensional gauge
group is U(1) so that Aµ(x) is U(1) valued. The constraint (76) leads again to the scalar singlet ϕ(x).

In general, we start with a U(1) gauge theory on M4 × S2
N . We solve the CSDR constraint (77)

by embedding SU(2) in U(N). There exist pN embeddings, where pN is the number of ways one
can partition the integer N into a set of non-increasing positive integers [108]. Then the constraint
(75) gives the surviving four-dimensional gauge group. The constraint (76) gives the surviving four-
dimensional scalars and eq. (80) is always a solution but in general not the only one. By setting φâ = ωâ

we obtain always a minimum of the potential. This minimum is given by the chosen embedding of
SU(2) in U(N).

An important point that we would like to stress here is the question of the renormalizability of the
gauge theory defined on M4×(S/R)F . First we notice that the theory exhibits certain features so similar
to a higher-dimensional gauge theory defined on M4 × S/R that naturally it could be considered as a
higher-dimensional theory too. For instance the isometries of the spaces M4 × S/R and M4 × (S/R)F
are the same. It does not matter if the compact space is fuzzy or not. For example in the case of the
fuzzy sphere, i.e. M4 ×S2

N , the isometries are SO(3, 1)×SO(3) as in the case of the continuous space,
M4 ×S2. Similarly the coupling of a gauge theory defined on M4 ×S/R and on M4 × (S/R)F are both
dimensionful and have exactly the same dimensionality. On the other hand the first theory is clearly
non-renormalizable, while the latter is renormalizable (in the sense that divergencies can be removed
by a finite number of counterterms). So from this point of view one finds a partial justification of the
old hopes for considering quantum field theories on non-commutative structures. If this observation
can lead to finite theories too, it remains as an open question.

10 Dynamical Generation of Extra Dimensions

Let us now discuss a further development [35] of these ideas, which addresses in detail the questions
of quantization and renormalization. This leads to a slightly modified model with an extra term in
the potential, which dynamically selects a unique (nontrivial) vacuum out of the many possible CSDR
solutions, and moreover generates a magnetic flux on the fuzzy sphere. It also allows to show that the
full tower of Kaluza-Klein modes is generated on S2

N .

10.1 The four-dimensional action

We start with a SU(N) gauge theory on four dimensional Minkowski space M4 with coordinates yµ,
µ = 0, 1, 2, 3. The action under consideration is

SY M =

∫

d4y Tr

(

1

4g2
F †

µνFµν + (Dµφa)
†Dµφa

)

− V (φ) (81)
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where Aµ are SU(N)-valued gauge fields, Dµ = ∂µ + [Aµ, .], and

φa = −φ†
a , a = 1, 2, 3

are 3 antihermitian scalars in the adjoint of SU(N),

φa → U †φaU

where U = U(y) ∈ SU(N). Furthermore, the φa transform as vectors of an additional global SO(3)
symmetry. The potential V (φ) is taken to be the most general renormalizable action invariant under
the above symmetries, which is

V (φ) = Tr (g1φaφaφbφb + g2φaφbφaφb − g3εabcφaφbφc + g4φaφa)

+
g5

N
Tr(φaφa)Tr(φbφb) +

g6

N
Tr(φaφb)Tr(φaφb) + g7. (82)

This may not look very transparent at first sight, however it can be written in a very intuitive way.
First, we make the scalars dimensionless by rescaling

φ′
a = R φa,

where R has dimension of length; we will usually suppress R since it can immediately be reinserted,
and drop the prime from now on. Now observe that for a suitable choice of R,

R =
2g2

g3
,

the potential can be rewritten as

V (φ) = Tr

(

a2(φaφa + b̃ 1l)2 + c +
1

g̃2
F †

abFab

)

+
h

N
gabgab (83)

for suitable constants a, b, c, g̃, h, where

Fab = [φa, φb] − εabcφc = εabcFc,

b̃ = b +
d

N
Tr(φaφa),

gab = Tr(φaφb). (84)

We will omit c from now. Notice that two couplings were reabsorbed in the definitions of R and b̃.
The potential is clearly positive definite provided

a2 = g1 + g2 > 0,
2

g̃2
= −g2 > 0, h ≥ 0,

which we assume from now on. Here b̃ = b̃(y) is a scalar, gab = gab(y) is a symmetric tensor under the
global SO(3), and Fab = Fab(y) is a su(N)-valued antisymmetric tensor field which will be interpreted
as field strength in some dynamically generated extra dimensions below. In this form, V (φ) looks
like the action of Yang-Mills gauge theory on a fuzzy sphere in the matrix formulation [109–112]. It
differs from the potential in (67) only by the presence of the first term a2(φaφa + b̃)2, which is strongly
suggested by renormalization. In fact it is necessary for the interpretation as pure YM action, and
we will see that it is very welcome on physical grounds since it dynamically determines and stabilizes
a vacuum, which can be interpreted as extra-dimensional fuzzy sphere. In particular, it removes
unwanted flat directions.
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10.2 Emergence of extra dimensions and the fuzzy sphere

The vacuum of the above model is given by the minimum of the potential (82). Finding the minimum
of the potential is a rather nontrivial task, and the answer depends crucially on the parameters in the
potential [35]. The conditions for the global minimum imply that φa is a representation of SU(2), with
Casimir b̃ (where it was assumed for simplicity h = 0). Then, it is easy to write down a large class of
solutions to the minimum of the potential, by noting that any decomposition of N = n1N1 + ...+nhNh

into irreps of SU(2) with multiplicities ni leads to a block-diagonal solution

φa = diag
(

α1 X(N1)
a , ..., αk X(Nk)

a

)

(85)

of the vacuum equations, where αi are suitable constants which will be determined below.
It turns out [35] that there are essentially only 2 types of vacua:

1. Type I vacuum It is plausible that the solution (85) with minimal potential contains only repre-
sentations whose Casimirs are close to b̃. In particular, let M be the dimension of the irrep whose
Casimir C2(M) ≈ b̃ is closest to b̃. If furthermore the dimensions match as N = Mn, we expect

that the vacuum is given by n copies of the irrep (M), which can be written as φa = α X
(N)
a ⊗1n

with low-energy gauge group SU(n).

2. Type II vacuum Consider again a solution (85) with ni blocks of size Ni = Ñ + mi, where Ñ is
defined by b̃ = 1

4 (Ñ2 − 1), and assume that Ñ is large and mi

Ñ
≪ 1. The action is then given by

V (φ) = Tr
( 1

2g̃2

∑

i

ni m
2
i 1lNi

+ O(
1

Ni
)
)

≈ 1

2g̃2

N

k

∑

i

ni m
2
i (86)

where k =
∑

ni is the total number of irreps, and the solution can be interpreted in terms
of “instantons” (nonabelian monopoles) on the internal fuzzy sphere [109]. Hence in order to
determine the solution of type (85) with minimal action, we simply have to minimize

∑

i ni m
2
i ,

where the mi ∈ Z− Ñ satisfy the constraint
∑

ni mi = N −kÑ . In this case the the the solution
with minimal potential among all possible partitions (85) is given by

φa =

(

α1 X
(N1)
a ⊗ 1n1

0

0 α2 X
(N2)
a ⊗ 1n2

)

,

with low-energy gauge group SU(n1) × SU(n2) × U(1).

Again, the X
(N)
a are interpreted as coordinate functions of a fuzzy sphere S2

N , and the “scalar” action

Sφ = TrV (φ) = Tr
(

a2(φaφa + b̃)2 +
1

g̃2
F †

abFab

)

for N × N matrices φa is precisely the action for a U(n) Yang-Mills theory on S2
N with coupling g̃, as

shown in [109]. In fact, the new term (φaφa + b̃)2 is essential for this interpretation, since it stabilizes

the vacuum φa = X
(N)
a and gives a large mass to the extra “radial” scalar field which otherwise

arises. The fluctuations of φa = X
(N)
a + Aa then provide the components Aa of a higher-dimensional

gauge field AM = (Aµ, Aa), and the action can be interpreted as YM theory on the 6-dimensional
space M4 × S2

N , with gauge group depending on the particular vacuum. We therefore interpret the
vacuum as describing dynamically generated extra dimensions in the form of a fuzzy sphere S2

N . This
geometrical interpretation can be fully justified by working out the spectrum of Kaluza-Klein modes.
The effective low-energy theory is then given by the zero modes on S2

N . This approach provides a clear
dynamical selection of the geometry due to the term (φaφa + b̃)2 in the action.

Perhaps the most remarkable aspect of this model is that the geometric interpretation and the
corresponding low-energy degrees of freedom depend in a nontrivial way on the parameters of the
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model, which are running under the RG group. Therefore the massless degrees of freedom and their
geometrical interpretation depend on the energy scale. In particular, the low-energy gauge group
generically turns out to be SU(n1)×SU(n2)×U(1) or SU(n), while gauge groups which are products
of more than two simple components (apart from U(1)) do not seem to occur. The values of n1 and n2

are determined dynamically, and with the appropriate choice of parameters it is possible to construct
vacuum solutions where they are as small, such as 2 and 3 [35].

It is interesting to examine the running of the coupling constants under the RG. R turns out to run
only logarithmically, implies that the scale of the internal spheres is only mildly affected by the RG
flow. However, b̃ is running essentially quadratically, hence is generically large. This is quite welcome
here: starting with some large N , b̃ ≈ C2(Ñ) must indeed be large in order to lead to the geometric
interpretation discussed above. Hence the problems of naturalness or fine-tuning appear to be rather
mild here.

A somewhat similar model has been studied in [113, 114], which realizes deconstruction and a
“twisted” compactification of an extra fuzzy sphere based on a supersymmetric gauge theory. Our
model is different and does not require supersymmetry, leading to a much richer pattern of symmetry
breaking and effective geometry. For other relevant work see e.g. [9].

The dynamical formation of fuzzy spaces found here is also related to recent work studying the
emergence of stable submanifolds in modified IIB matrix models. In particular, previous studies based
on actions for fuzzy gauge theory different from ours generically only gave results corresponding to
U(1) or U(∞) gauge groups, see e.g. [115–117] and references therein. The dynamical generation of a
nontrivial index on noncommutative spaces has also been observed in [118,119] for different models.

Our mechanism may also be very interesting in the context of the recent observation [120] that
extra dimensions are very desirable for the application of noncommutative field theory to particle
physics. Other related recent work discussing the implications of the higher-dimensional point of view
on symmetry breaking and Higgs masses can be found in [121–124]. These issues could now be discussed
within a renormalizable framework.

11 Concluding remarks on the use of Fuzzy extra dimensions

Non-commutative Geometry has been regarded as a promising framework for obtaining finite quantum
field theories and for regularizing quantum field theories. In general quantization of field theories on
non-commutative spaces has turned out to be much more difficult and with less attractive ultraviolet
features than expected see however ref. [125], and ref. [109,126]. Recall also that non-commutativity is
not the only suggested tool for constructing finite field theories. Indeed four-dimensional finite gauge
theories have been constructed in ordinary space-time and not only those which are N = 4 and N = 2
supersymmetric, and most probably phenomenologically uninteresting, but also chiral N = 1 gauge
theories [49, 50] which already have been successful in predicting the top quark mass and have rich
phenomenology that could be tested in future colliders [38, 49–51, 74–76, 76, 127, 128]. In the present
work we have not addressed the finiteness of non-commutative quantum field theories, rather we have
used non-commutativity to produce, via Fuzzy-CSDR, new particle models from particle models on
M4 × (S/R)F .

A major difference between fuzzy and ordinary SCDR is that in the fuzzy case one always embeds
S in the gauge group G instead of embedding just R in G. This is due to the fact that the differential
calculus on the fuzzy coset space is based on dimS derivations instead of the restricted dimS − dimR
used in the ordinary one. As a result the four-dimensional gauge group H = CG(R) appearing in the
ordinary CSDR after the geometrical breaking and before the spontaneous symmetry breaking due to
the four-dimensional Higgs fields does not appear in the Fuzzy-CSDR. In Fuzzy-CSDR the spontaneous
symmetry breaking mechanism takes already place by solving the Fuzzy-CSDR constraints. The four-
dimensional potential has the typical “mexican hat” shape, but it appears already spontaneously broken.
Therefore in four dimensions appears only the physical Higgs field that survives after a spontaneous
symmetry breaking. Correspondingly in the Yukawa sector of the theory we have the results of the
spontaneous symmetry breaking, i.e. massive fermions and Yukawa interactions among fermions and
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the physical Higgs field. Having massive fermions in the final theory is a generic feature of CSDR when
S is embedded in G [21]. We see that if one would like to describe the spontaneous symmetry breaking
of the SM in the present framework, then one would be naturally led to large extra dimensions.

A fundamental difference between the ordinary CSDR and its fuzzy version is the fact that a non-
abelian gauge group G is not really required in high dimensions. Indeed the presence of a U(1) in the
higher-dimensional theory is enough to obtain non-abelian gauge theories in four dimensions.

In a further development, we have presented a renormalizable four dimensional SU(N) gauge the-
ory with a suitable multiplet of scalars, which dynamically develops fuzzy extra dimensions that form
a fuzzy sphere. The model can then be interpreted as 6-dimensional gauge theory, with gauge group
and geometry depending on the parameters in the original Lagrangian. We explicitly find the tower
of massive Kaluza-Klein modes, consistent with an interpretation as compactified higher-dimensional
gauge theory, and determine the effective compactified gauge theory. This model has a unique vac-
uum, with associated geometry and low-energy gauge group depending only on the parameters of the
potential.

There are many remarkable aspects of this model. First, it provides an extremely simple and
geometrical mechanism of dynamically generating extra dimensions, without relying on subtle dynam-
ics such as fermion condensation and particular Moose- or Quiver-type arrays of gauge groups and
couplings, such as in [107] and following work. Rather, our model is based on a basic lesson from non-
commutative gauge theory, namely that noncommutative or fuzzy spaces can be obtained as solutions
of matrix models. The mechanism is quite generic, and does not require fine-tuning or supersymme-
try. This provides in particular a realization of the basic ideas of compactification and dimensional
reduction within the framework of renormalizable quantum field theory. Moreover, we are essentially
considering a large N gauge theory, which should allow to apply the analytical techniques developed
in this context.

In particular, it turns out that the generic low-energy gauge group is given by SU(n1)×SU(n2)×
U(1) or SU(n), while gauge groups which are products of more than two simple components (apart
from U(1)) do not seem to occur in this model. The values of n1 and n2 are determined dynamically.
Moreover, a magnetic flux is induced in the vacua with non-simple gauge group, which is very interesting
in the context of fermions, since internal fluxes naturally lead to chiral massless fermions [129]. This
will be studied in detail elsewhere.

There is also an intriguing analogy between our toy model and string theory, in the sense that as long
as a = 0, there are a large number of possible vacua (given by all possible partitions) corresponding to
compactifications, with no dynamical selection mechanism to choose one from the other. Remarkably
this analog of the “string vacuum problem” is simply solved by adding a term to the action.
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