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Abstract

Under the general hypotheses of locality, smoothness of interactions in the coupling constant,
Poincaré invariance, Lorentz covariance, and preservation of the number of derivatives on each field,
we review the problem of the construction of cross-couplings of one or several spin-two fields to a
massless p-form.
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1 Chronology

During the last 10 years the problem of constructing consistent interactions among different spin-two
fields has been approached from a BRST cohomological perspective in several papers:

• N. Boulanger, T. Damour, L. Gualtieri and M. Henneaux, Inconsistency of interacting, multi-
graviton theories, Nucl. Phys. B597 (2001) 127–171 [arXiv:hep-th/0007220]

• C. Bizdadea, E. M. Cioroianu, A. C. Lungu and S. O. Saliu, No multi-graviton theories in the
presence of a Dirac field, J. High Energy Phys. JHEP 0502 (2005) 016 [arXiv:0704.2321v1[hep-
th]]

• C. Bizdadea, E. M. Cioroianu, D. Cornea, S. O. Saliu and S. C. Sararu, No interactions for a
collection of spin-two fields intermediated by a massive Rarita-Schwinger field, Eur. Phys. J.
C48 (2006) 265–289 [arXiv:0704.2334v1[hep-th]].

All these no-go results have been deduced under the general hypotheses: space-time locality,
smoothness in the coupling constant, (background) Lorentz covariance, Poincaré invariance (i.e. we
do not allow explicit dependence on the spacetime coordinates) and preservation of the number of
derivatives on each field (such that the differential order of the deformed field equations is preserved
with respect to the free model)–derivative order assumption.

It is nevertheless known that the relaxation of the derivative order condition may lead to exotic
couplings for one or a collection of spin-two fields, which are no longer mastered by General Relativity.

• N. Boulanger and L. Gualtieri, An exotic theory of massless spin-two fields in three dimensions,
Class. Quant. Grav. 18 (2001) 1485–1502 [arXiv:hep-th/0012003]
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2 Overview

In this talk we approach the folowing problems:
i) the construction of the couplings among a massless vector field and one spin-two field;
ii) the derivation of the interactions among a massless vector field and several spin-two fields;
iii) the generalization of the previous results to the case of couplings between one or several

gravitons and an arbitrary massless p-form gauge field.
We use the method of consistent deformations of the generator of the Lagrangian BRST symmetry

(known as the solution of the master equation) by means of specific cohomological techniques, relying
on local BRST cohomology.

The general hypotheses are the same like in the above.
The talk is based on the paper

• C. Bizdadea, E. M. Cioroianu, D. Cornea, E. Diaconu, S. O. Saliu and S. C. Sararu, Interactions
for a collection of spin-two fields intermediated by a massless p-form, Nucl. Phys. B794 (2008)
442–494 [arXiv:0705.3210v2[hep-th]].

3 Consistent interactions between the spin-two field and a massless
vector field

3.1 BRST symmetry of the free model

Our starting point is represented by a free Lagrangian action, written as the sum between the linearized
Hilbert-Einstein action (also known as the Pauli-Fierz action) and Maxwell’s action in D > 2 spacetime
dimensions

SL
0 [hµν , Vµ] =

∫
dDx

[
−1

2
(∂µhνρ) ∂µhνρ + (∂µhµρ) ∂νhνρ

− (∂µh) ∂νh
νµ +

1
2

(∂µh) ∂µh− 1
4
FµνF

µν

]
(1)

≡
∫

dDx
(
L(PF)

0 + L(vect)
0

)
.

The restriction D > 2 is required by the spin-two field action, which is known to reduce to a total
derivative in D = 2. Throughout the paper we work with the flat metric of ‘mostly plus’ signature,
σµν = (−+ . . .+). In the above h denotes the trace of the Pauli-Fierz field, h = σµνh

µν , and Fµν

represents the Abelian field-strength of the massless vector field (Fµν ≡ ∂[µVν]). The theory described
by action (1) possesses an Abelian and irreducible generating set of gauge transformations

δεhµν = ∂µεν + ∂νεµ ≡ ∂(µεν), δεVµ = ∂µε, (2)

with εµ and ε bosonic gauge parameters. The notation [µ . . . ν] (or (µ . . . ν)) signifies antisymmetry
(or symmetry) with respect to all indices between brackets without normalization factors (i.e., the
independent terms appear only once and are not multiplied by overall numerical factors).

In order to construct the BRST symmetry for action (1), it is necessary to introduce the field/ghost
and antifield spectra

Φα0 = (hµν , Vµ), Φ∗α0
= (h∗µν , V ∗µ), (3)

ηα1 = (ηµ, η), η∗α1 = (η∗µ, η∗). (4)

The fermionic ghosts ηα1 are associated with the gauge parameters εα1 = {εµ, ε} respectively and the
star variables represent the antifields of the corresponding fields/ghosts. (According to the standard
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rule of the BRST method, the Grassmann parity of a given antifield is opposite to that of the cor-
responding field/ghost.) Since the gauge generators are field-independent and irreducible, it follows
that the BRST differential decomposes into

s = δ + γ, (5)

where δ is the Koszul-Tate differential and γ denotes the exterior longitudinal derivative. The Koszul-
Tate differential is graded in terms of the antighost number (agh, agh (δ) = −1, agh (γ) = 0) and
enforces a resolution of the algebra of smooth functions defined on the stationary surface of field
equations for action (1), C∞ (Σ), Σ : δSL

0 /δΦα0 = 0. The exterior longitudinal derivative is graded in
terms of the pure ghost number (pgh, pgh (γ) = 1, pgh (δ) = 0) and is correlated with the original gauge
symmetry via its cohomology in pure ghost number zero computed in C∞ (Σ), which is isomorphic to
the algebra of physical observables for this free theory. These two degrees of the BRST generators are
valued as

agh(Φα0) = agh(ηα1) = 0, agh(Φ∗α0
) = 1, agh(η∗α1) = 2, (6)

pgh(Φα0) = 0, pgh(ηα1) = 1, pgh(Φ∗α0
) = pgh(η∗α1) = 0. (7)

The overall degree that grades the BRST complex is named ghost number (gh) and is defined like
the difference between the pure ghost number and the antighost number, such that gh (s) = gh (δ) =
gh (γ) = 1. The actions of the operators δ and γ (taken to act as right differentials) on the BRST
generators read as

δh∗µν = 2Hµν , δV ∗µ = −∂νF
νµ, (8)

δη∗µ = −2∂νh
∗νµ, δη∗ = −∂µV ∗µ, (9)

δΦα0 = 0, δηα1 = 0, (10)
γΦ∗α0

= 0, γη∗α1 = 0, (11)
γhµν = ∂(µην), γVµ = ∂µη, (12)
γηµ = 0, γη = 0. (13)

In the above Hµν is the linearized Einstein tensor

Hµν = Kµν − 1
2
σµνK, (14)

with Kµν and K the linearized Ricci tensor and the linearized scalar curvature respectively, both
obtained from the linearized Riemann tensor

Kµν|αβ = −1
2
(∂µ∂αhνβ + ∂ν∂βhµα − ∂ν∂αhµβ − ∂µ∂βhνα), (15)

from its trace and double trace respectively

Kµα = σνβKµν|αβ, K = σµασνβKµν|αβ . (16)

The BRST differential is known to have a canonical action in a structure named antibracket and
denoted by the symbol (, ) (s· = (·, S̄)

), which is obtained by considering the fields/ghosts conjugated
respectively to the corresponding antifields. The generator of the BRST symmetry is a bosonic func-
tional of ghost number zero, which is solution to the classical master equation

(
S̄, S̄

)
= 0. The full

solution to the master equation for the free model under study reads as

S̄ = SL
0 [hµν , Vµ] +

∫
dDx

(
h∗µν∂(µην) + V ∗µ∂µη

)
(17)

and encodes all the information on the gauge structure of the theory (1)–(2).
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3.2 Brief review of the deformation procedure

We begin with a “free” gauge theory, described by a Lagrangian action SL
0 [Φα0 ], invariant under some

gauge transformations δεΦα0 = Z̄α0
α1

εα1 , i.e. δSL
0

δΦα0 Z̄α0
α1

= 0, and consider the problem of constructing
consistent interactions among the fields Φα0 such that the couplings preserve the field spectrum and
the original number of gauge symmetries. This matter is addressed by means of reformulating the
problem of constructing consistent interactions as a deformation problem of the solution to the master
equation corresponding to the “free” theory. Such a reformulation is possible due to the fact that the
solution to the master equation contains all the information on the gauge structure of the theory. If an
interacting gauge theory can be consistently constructed, then the solution S̄ to the master equation
associated with the “free” theory,

(
S̄, S̄

)
= 0, can be deformed into a solution S

S̄ → S = S̄ + kS1 + k2S2 + · · · = S̄ + k

∫
dDx a + k2

∫
dDx b + · · · (18)

of the master equation for the deformed theory

(S, S) = 0, (19)

such that both the ghost and antifield spectra of the initial theory are preserved. The projection
of equation (19) on the various orders in the coupling constant k leads to the equivalent tower of
equations

(
S̄, S̄

)
= 0, (20)

2
(
S1, S̄

)
= 0, (21)

2
(
S2, S̄

)
+ (S1, S1) = 0, (22)

...

Equation (20) is fulfilled by hypothesis. The next equation requires that the first-order deformation
of the solution to the master equation, S1, is a co-cycle of the “free” BRST differential s, sS1 = 0.
However, only cohomologically nontrivial solutions to (21) should be taken into account, since the
BRST-exact ones can be eliminated by some (in general nonlinear) field redefinitions. This means
that S1 pertains to the ghost number zero cohomological space of s, H0 (s), which is nonempty because
it is isomorphic to the space of physical observables of the “free” theory. It has been shown (by of
the triviality of the antibracket map in the cohomology of the BRST differential) that there are no
obstructions in finding solutions to the remaining equations, namely (22), etc. However, the resulting
interactions may be nonlocal and there might even appear obstructions if one insists on their locality.
The analysis of these obstructions can be done with the help of cohomological techniques.

3.3 Standard material: basic cohomologies

If we make the notation S1 =
∫

dDx a, then equation (21), which controls the first-order deformation,
takes the local form

sa = ∂µmµ, gh (a) = 0, ε (a) = 0, (23)

for some local current mµ.
In order to analyze equation (23) we develop a according to the antighost number

a =
I∑

i=0

ai, agh (ai) = i, gh (ai) = 0, ε (ai) = 0, (24)

and assume, without loss of generality, that decomposition (24) stops at some finite value of I. Re-
placing decomposition (24) into (23) and projecting it on the various values of the antighost number
by means of (5), we obtain that (23) is equivalent with the tower of equations

γaI = 0, (25)
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δaI + γaI−1 = ∂µmµ
I−1, (26)

δai + γai−1 = ∂µmµ
i−1, 1 ≤ i ≤ I − 1, (27)

where (mµ
i )i=0,I−1 are some local currents, with agh (mµ

i ) = i. In other words, the nontriviality of the
first-order deformation a is translated at its highest antighost number component into the requirement
that aI ∈ HI (γ), where HI (γ) denotes the cohomology of the exterior longitudinal derivative γ in
pure ghost number equal to I. So, in order to solve equation (25), we need to compute the cohomology
of γ, H (γ).

Using the results on the cohomology of γ in the Pauli-Fierz sector as well as definitions (11)–(13),
we can state that H (γ) is generated on the one hand by Φ∗α0

, η∗α1 , Fµν , and Kµναβ, together with
their spacetime derivatives and, on the other hand, by the undifferentiated ghosts η and ηµ as well as
by their antisymmetric first-order derivatives ∂[µην]. (The spacetime derivatives of η are γ-exact, in
agreement with the latter definition from (12), and the same is valid for the derivatives of ηµ of order
two and higher.) So, the most general (and nontrivial) solution to (25) can be written, up to γ-exact
contributions, as

aI = αI([Fµν ], [Kµνρλ], [Φ∗α0
], [η∗α1 ])eI(η, ηµ, ∂[µην]), (28)

where the notation f ([q]) means that f depends on q and its derivatives up to a finite order, while eI

denotes the elements of a basis in the space of polynomials with pure ghost number I in η, ηµ, and
∂[µην]. The objects αI (obviously nontrivial in H0 (γ)) were taken to have a finite antighost number and
a bounded number of derivatives, and therefore they are polynomials in the antifields, in the linearized
Riemann tensor Kµναβ, and in the field-strength Fµν as well as in their subsequent derivatives. They
are required to fulfill the property agh (αI) = I in order to ensure that the ghost number of aI is
equal to zero. Due to their γ-closeness, γαI = 0, and to their polynomial character, αI will be called
invariant polynomials. In antighost number zero the invariant polynomials are polynomials in the
linearized Riemann tensor, in the field-strength of the Abelian field, and in their derivatives.

Inserting (28) in (26), we obtain that a necessary (but not sufficient) condition for the existence
of (nontrivial) solutions aI−1 is that the invariant polynomials αI are (nontrivial) objects from the
local cohomology of the Koszul-Tate differential H (δ|d) in antighost number I > 0 and in pure ghost
number zero

δαI = ∂µjµ
I−1, agh

(
jµ
I−1

)
= I − 1, pgh

(
jµ
I−1

)
= 0. (29)

Using the fact that the Cauchy order of the free theory under study is equal to two, the general results
from literature, according to which the local cohomology of the Koszul-Tate differential in pure ghost
number zero is trivial in antighost numbers strictly greater than its Cauchy order, ensure that

HJ (δ|d) = 0, J > 2, (30)

where HJ (δ|d) denotes the local cohomology of the Koszul-Tate differential in antighost number J and
in pure ghost number zero. It can be shown that any invariant polynomial that is trivial in HJ (δ|d)
with J ≥ 2 can be taken to be trivial also in H inv

J (δ|d). (H inv
J (δ|d) denotes the invariant characteristic

cohomology in antighost number J — the local cohomology of the Koszul-Tate differential in the space
of invariant polynomials.) Thus:

(
αJ = δbJ+1 + ∂µcµ

J , agh (αJ) = J ≥ 2
) ⇒ αJ = δβJ+1 + ∂µγµ

J , (31)

with both βJ+1 and γµ
J invariant polynomials. Results (31) and (30) yield the conclusion that the

invariant characteristic cohomology is trivial in antighost numbers strictly greater than two

H inv
J (δ|d) = 0, J > 2. (32)

Moreover, it can be proved that the spaces H2 (δ|d) and H inv
2 (δ|d) are spanned by

H2 (δ|d) ,H inv
2 (δ|d) : (η∗, η∗µ) . (33)

In contrast to the groups (HJ (δ|d))J≥2 and
(
H inv

J (δ|d)
)
J≥2

, which are finite-dimensional, the coho-
mology H1 (δ|d) in pure ghost number zero, known to be related to global symmetries and ordinary
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conservation laws, is infinite-dimensional since the theory is free. Fortunately, it will not be needed in
the sequel.

The previous results on H (δ|d) and H inv (δ|d) in strictly positive antighost numbers are important
because they control the obstructions of removing the antifields from the first-order deformation.
Based on formulas (30)–(32), one can eliminate all the pieces of antighost number strictly greater
than two from the nonintegrated density of the first-order deformation by adding only trivial terms.
Consequently, one can take (without loss of nontrivial objects) I ≤ 2 into the decomposition (24).
In addition, the last representative reads as in (28), where the invariant polynomial is necessarily a
nontrivial object from H inv

2 (δ|d) if I = 2 and from H1 (δ|d) if I = 1 respectively.

3.4 First-order deformation

With these ingredients at hand we find that the most general, nontrivial first-order deformation of
the solution to the master equation corresponding to action (1) and to its gauge transformations (2),
which complies with all the working hypotheses, is expressed by

S1 = S
(PF)
1 + S

(int)
1 , (34)

where

S
(PF)
1 =

∫
dDx

[
1
2
fη∗µην∂[µην] + fh∗µρ

(
(∂ρη

ν) hµν − ην∂[µhν]ρ

)

+fa
(EH−cubic)
0 − 2Λh

]
, (35)

and

S
(int)
1 =

∫
dDx

{
y2

[
h∗η + (D − 2)

(
−V ∗ληλ + V λ∂[µh µ

λ]

)]

+y3δ
D
3 εµνρ

(
V ∗µ∂[νηρ] + F λµ∂[νh

ρ]
λ

)
+ p [η∗ηµ∂µη

−1
2
V ∗µ (

V ν∂[µην] + 2 (∂νVµ) ην − hµν∂
νη

)

+
1
8
Fµν

(
2∂[µ

(
hν]ρV

ρ
)

+ Fµνh− 4Fµρh
ρ

ν

)]

+q1δ
D
3 εµνλVµFνλ + q2δ

D
5 εµνλαβVµFνλFαβ

}
, (36)

with δD
m the Kronecker symbol. Thus, the first-order deformation of the solution to the master equation

for the model under study is parameterized by seven independent, real constants, namely f and Λ
corresponding to S

(PF)
1 together with p, y2, y3δ

D
3 , q1δ

D
3 , and q2δ

D
5 associated with S

(int)
1 .

3.5 Higher-order deformations

The construction of the second-order deformation of the solution to the master equation is governed
by equation (22). Replacing (34) into (22) we find that it leads to the equations

p (p + f) = 0, (37)
(2p + f) y3δ

D
3 = 0, (38)

(2p + f) y2 = 0, (39)

for the constants that parameterizes the first order deformation. There are three relevant solutions to
the above equations

Case I : p = −f 6= 0, y2 = 0 = y3δ
D
3 , D > 2, (40)

Case II : p = f = 0, D = 3, (41)
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Case III : p = f = 0, D > 3, (42)

which require an individual treatment. In general, the consistency of the deformations of orders three,
four, and higher may impose new restrictions upon the constants that parameterize the first-order
deformation.

3.5.1 Case I — General Relativity

For the sake of simplicity we set f = 1, so p = −1. Then, after long computations we find that in the
first case the consistent interactions between a graviton and a vector field are described in all D > 2
dimensions by the Lagrangian action

SL(I)
[
gµν , V̄µ

]
=

∫
dDx

[
2
k2

√−g
(
R− 2k2Λ

)− 1
4
√−ggµνgρλF̄µρF̄νλ

+k
(
q1δ

D
3 εµ1µ2µ3 V̄µ1F̄µ2µ3 + q2δ

D
5 εµ1µ2µ3µ4µ5 V̄µ1F̄µ2µ3F̄µ4µ5

)]
(43)

that is invariant under the deformed gauge transformations

δ(I)
ε gµν = kε(µ;ν), δ(I)

ε V̄µ = ∂µε + k (∂µε̄ν) V̄ν + k
(
∂ν V̄µ

)
ε̄ν , (44)

where
gµν = σµν + khµν , V̄µ = ea

µVa, (45)

while εµ;ν is the (full) covariant derivative of εµ and ea
µ is the inverse of vielbein eµ

a .
Our result follows as a consequence of applying a cohomological procedure based on the“free”

BRST symmetry in the presence of a few natural assumptions. General covariance was not imposed
a priori, but was gained in a natural way from the cohomological setting developed here under the
previously mentioned hypotheses.

In conclusion, the first case outputs the formulas (43)–(44) which turn out to describe nothing but
the standard graviton-vector interactions from General Relativity.

3.5.2 Case II — new solutions in D = 3

In this situation we obtain two subcases, but only one is relevant. In the relevant subcase, the
consistency of the deformation procedure imposes that

q2δ
D
5 = y2 = 0, (46)

such the Lagrangian action of the coupled model is given by (for y3 = 1)

SL(II)[hµν , Vµ] =
∫

d3x

[
L(PF)

0 − 1
4
FµνF

µν − 2kΛh

−kFµνεµνρ∂
[θh

ρ]
θ + 2k2

(
∂[µhρ]

µ

)
∂[νh

ν
ρ]

]
, (47)

where L(PF)
0 is the Pauli-Fierz Lagrangian and Λ is the cosmological constant, while the gauge sym-

metries of (47) read as

δ(II)
ε hµν = ∂(µεν), δ(II)

ε Vµ = ∂µε + kεµνρ∂
[νερ]. (48)

In conclusion, this subcase yields another possibility to establish nontrivial couplings between the
Pauli-Fierz field and a vector field. It is complementary to case I (General Relativity) due to the
consistency conditions (37)–(39) and is valid only in D = 3.

3.5.3 Case III — nothing new

The case III brings no new information on the possible couplings between a spin-two field and a
massless one-form.
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4 No cross-couplings in multi-graviton theories intermediated by a
vector field

4.1 First-order deformation. Consistency conditions

4.1.1 Generalities

We start now from a finite sum of Pauli-Fierz actions and a single Maxwell action in D > 2

SL
0

[
hA

µν , Vµ

]
=

∫
dDx

[
−1

2
(
∂µhA

νρ

)
∂µhνρ

A +
(
∂µhµρ

A

)
∂νhA

νρ

− (
∂µhA

)
∂νh

νµ
A +

1
2

(
∂µhA

)
∂µhA − 1

4
FµνF

µν

]
, (49)

where hA is the trace of the Pauli-Fierz field hµν
A (hA = σµνh

µν
A ), with A = 1, n and n > 1. The

collection indices A, B, etc., are raised and lowered with a quadratic form kAB that determines a
positively-defined metric in the internal space. It can always be normalized to δAB by a simple linear
field redefinition, so from now on we take kAB = δAB and re-write (49) as

SL
0

[
hA

µν , Vµ

]
=

∫
dDx

[
n∑

A=1

L(PF)
0

(
hA

µν , ∂λhA
µν

)
+ L(vect)

0

]
, (50)

where L(PF)
0

(
hA

µν , ∂λhA
µν

)
is the Pauli-Fierz Lagrangian for the graviton A. Action (49) is invariant

under the gauge transformations

δεh
A
µν = ∂(µεA

ν), δεVµ = ∂µε. (51)

The BRST complex comprises the fields, ghosts, and antifields

Φ̂α0 = (hA
µν , Vµ), η̂α1 = (ηA

µ , η), (52)

Φ̂∗α0
= (h∗µν

A , V ∗µ), η̂∗α1 = (η∗µA , η∗), (53)

whose degrees are the same like in the case of a single Pauli-Fierz field. The BRST differential
decomposes exactly like in (5) and its components act on the BRST generators via the relations

δh∗µν
A = 2Hµν

A , δV ∗µ = −∂νF
νµ, (54)

δη∗µA = −2∂νh
∗νµ
A , δη∗ = −∂µV ∗µ, (55)

δΦ̂α0 = 0, δη̂α1 = 0, (56)
γΦ̂∗α0

= 0, γη̂∗α1 = 0, (57)

γhA
µν = ∂(µηA

ν), γVµ = ∂µη, (58)

γηA
µ = 0, γη = 0, (59)

where Hµν
A = Kµν

A − 1
2σµνKA is the linearized Einstein tensor of the Pauli-Fierz field hµν

A . The solution
to the master equation for this free model takes the simple form

S̄′ = SL
0

[
hA

µν , Vµ

]
+

∫
dDx

(
h∗µν

A ∂(µηA
ν) + V ∗µ∂µη

)
. (60)

4.1.2 First-order deformation

Acting like in the one graviton case, we can write the first-order deformation of the solution to the
master for a single vector field and a collection of Pauli-Fierz fields like

Ŝ1 = Ŝ
(PF)
1 + Ŝ

(int)
1 , (61)
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where

Ŝ
(PF)
1 =

∫
dDx

{
1
2
fA

BCη∗µA ηBν∂[µηC
ν] + fA

BCh∗µρ
A

[(
∂ρη

Bν
)
hC

µν

−ηBν∂[µhC
ν]ρ

]
+ fABC â

(cubic)ABC
0 − 2ΛAhA

}
, (62)

Ŝ
(int)
1 =

∫
dDx

{
y2A

[
h∗Aη + (D − 2)

(
−V ∗ληA

λ + V λ∂[µhAµ
λ]

)]

+yA
3 δD

3 εµνρ

(
V ∗µ∂[νη

ρ]
A + F λµ∂[νh

ρ]
A λ

)
+ pA

[
η∗ηA

µ ∂µη

−1
2
V ∗µ

(
V ν∂[µηA

ν] + 2 (∂νVµ) ηAν − hA
µν∂

νη
)

+
1
8
Fµν

(
2∂[µ

(
hA

ν]ρV
ρ
)

+ Fµνh
A − 4Fµρh

Aρ
ν

)]

+q1δ
D
3 εµνλVµFνλ + q2δ

D
5 εµνλαβVµFνλFαβ

}
. (63)

We remark that the first-order deformation is parameterized by seven types of real, constant coeffi-
cients, namely fA

BC , ΛA, y2A, yA
3 δD

3 , pA, q1δ
D
3 , and q2δ

D
5 , with fABC defined as

fABC = kADfD
BC ≡ δADfD

BC . (64)

Moreover, the construction of Ŝ
(PF)
1 requires that the constants fA

BC and fABC must satisfy the relations

fA
BC = fA

CB, (65)

fABC =
1
3

(fABC + fCAB + fBCA) ≡ 1
3
f(ABC). (66)

4.1.3 Consistency of the first-order deformation

Next, we investigate the consistency of the first-order deformation, expressed by equation (22), with
S1,2 replaced by Ŝ1,2 (

Ŝ1, Ŝ1

)
+ 2sŜ2 = 0. (67)

On the one hand, the equation (67) restricts the coefficients fC
AB to satisfy the supplementary condi-

tions
fD

A[B fE
C]D = 0. (68)

Combining (65), (66), and (68), we conclude that the coefficients fC
AB define the structure constants

of a real, commutative, symmetric, and associative (finite-dimensional) algebra. Such an algebra has
a trivial structure: it is a direct sum of one-dimensional ideals. Therefore, fC

AB = 0 whenever two
indices are different

fC
AB = 0, if (A 6= B or B 6= C or C 6= A) . (69)

For notational simplicity, we denote fABC for A = B = C by

fAAA ≡ fA without summation over A. (70)

On the other hand, the equation (67) leads to the following relations

pApB = 0, for all A 6= B, (71)
(pAy3B + pBy3A) δD

3 = 0, for all A 6= B, (72)
pAy2B + pBy2A = 0, for all A 6= B, (73)

pA (fA + pA) = 0, without summation over A, (74)
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(fA + 2pA) y3AδD
3 = 0, without summation over A, (75)

(fA + 2pA) y2A = 0, without summation over A. (76)

Equations (71)–(76) possess two types of solutions. In case I we have the solution

p1 = −f1 6= 0, (pB)B=2,n = 0,
(
y3AδD

3

)
A=1,n

= 0 = (y2A)A=1,n , (77)

while in case II the solution reads as

(pA)A=1,n = 0, (fĀ)Ā=1,m = 0,
(
y3A′δ

D
3

)
A′=m+1,n

= 0 = (y2A′)A′=m+1,n . (78)

The solution (78) contains two limit situations: m = n and m = 0.
In general, the consistency of the deformations of orders three, four, and higher may impose new

restrictions upon the constants that parameterize the first-order deformation.

4.2 Main cases. Coupled theories

4.2.1 Case I: no-go results in General Relativity

In case I, the consistency procedure imposes no new constraints on the parameterizing constants. In
consequence, the coupled model is maximally parameterized by (fA)A=1,n, p1 = −f1 6= 0, (ΛA)A=1,n,
q1δ

D
3 , and q2δ

D
5 . Of course, it is possible that some of fB (for B 6= 1), ΛA, q1, or q2 vanish. Accordingly,

in case I we obtain the Lagrangian action (for f1 = 1 = −p1)

ŜL(I)
[
hA

µν , Vµ

]
=

∫
dDx

[
2
k2

√
−g1

(
R1 − 2k2Λ1

)

−1
4

√
−g1g1µνg1ρλF̄ 1

µρF̄
1
νλ + k

(
q1δ

D
3 ε1µ1µ2µ3 V̄ 1

µ1
F̄ 1

µ2µ3

+q2δ
D
5 ε1µ1µ2µ3µ4µ5 V̄ 1

µ1
F̄ 1

µ2µ3
F̄ 1

µ4µ5

)]

+
n∑

B=2

[∫
dDx

2
k2

B

√
−gB

(
RB − 2kkBΛB

)]

≡ ŜL(I)
[
g1
µν , V̄

1
µ

]
+

n∑

B=2

ŜL(E−H)
[
gB
µν

]
, (79)

where V̄ 1
µ and F̄ 1

µν are ‘curved’ with the vielbein fields from the first graviton sector

V̄ 1
µ = e1a

µ Va, F̄ 1
µν = ∂[µ

(
e1a
ν] Va

)
, (80)

ε1µ1µ2...µD =
√
−g1e1µ1

a1
· · · e1µD

aD
εa1...aD . (81)

The notations RA and gA (A = 1, n) denote the full scalar curvature and the determinant of the metric
tensor gA

µν = σµν + kAhA
µν (without summation over A) from the A-th graviton sector respectively,

while kB = kfB, B = 2, n. From (79), we observe that the vector field gets coupled to single graviton
(A = 1) according to the standard coupling from General Relativity, while each of the other gravitons
(B = 2, n) interacts only with itself according to an Einstein-Hilbert action (or possibly a Pauli-Fierz
action if fB = 0) with a cosmological term.

The final conclusion is that in the first case there is no cross-interaction among different gravitons
to all orders in the coupling constant.

4.2.2 Case II: no-go results for the new couplings in D = 3

In case II, the consistency procedure imposes new constraints on the parameterizing constants, such
that we obtain two different situations.
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Subcase II.1 In subcase II.1 the consistency of the deformed solution to the master equation requires
the conditions

(pA)A=1,n = 0 = (y2A)A=1,n , (fĀ)Ā=1,m = 0, (82)
(
y3A′δ

D
3

)
A′=m+1,n

= 0, q1δ
D
3 = 0 = q2δ

D
5 . (83)

The full deformed Lagrangian action for this subcase is given by

ŜL(II.1) =
n∑

A′=m+1

ŜL(E−H)
[
gA′
µν

]
+ ŜL(special), (84)

where

ŜL(special) =
m∑

Ā=1

{∫
dDx

[
L(PF)

0

(
hĀ

µν , ∂λhĀ
µν

)
− 2kΛĀhĀ

]}

+
∫

dDx



−

1
4
FµνF

µν + k

m∑

Ā=1

yĀ
3 δD

3 εµνρFλµ∂[νh
Ā λ
ρ]

+k2
m∑

Ā,B̄=1

[
yĀ
3 yB̄

3 δD
3

(
∂[νh

Ā
ρ]λ

)
∂[ν′h

B̄ λ
ρ′] σνν′σρρ′

]


 . (85)

Each ŜL(E−H)
[
gA′
µν

]
represents a copy of the full Einstein-Hilbert action with a cosmological constant

associated with the graviton field hA′
µν (A′ = m + 1, n), so they cannot produce couplings among different

gravitons. Let us analyze in more detail the second part. It stops at order two in the coupling constant
and in D = 3 spacetime dimensions seems to mix different spin-two fields via the terms from the last
(double) sum in the right-hand side of (85) with Ā 6= B̄.

In order to focus in more detail on (85) we take the limit situation m = n (so Ā → A) in the
conditions (82)–(83) and work in D = 3, such that the entire deformed action, ŜL(II.1), reduces to
(85), i.e.

ŜL(II.1)[hA
µν , V

µ] =
∫

d3x

{
−1

4
FµνF

µν +
n∑

A=1

[
L(PF)

0

(
hA

µν , ∂λhA
µν

)

−2kΛAhA − kyA
3 εµνρFµν∂[θh

A θ
ρ]

]

+2k2
n∑

A,B=1

[
yA
3 yB

3

(
∂[µhA µ

ρ]

)
∂[νh

B ν
λ] σρλ

]


 . (86)

Unfortunately, action (86) does not describe in fact cross-couplings between different spin-two
fields. In order to make this observation clear, let us denote by Y the matrix of elements yA

3 yB
3 . It is

simple to see that the rank of Y is equal to one. By an orthogonal transformation M we can always
find a matrix Ŷ of the form

Ŷ = MT Y M, (87)

with MT the transposed of M , such that

Ŷ 11 =
n∑

A=1

(
yA
3

)2 ≡ λ2, Ŷ 1A′ = Ŷ B′1 = Ŷ A′B′ = 0, A′, B′ = 2, n. (88)

If we make the notation
ŷA = MACyC

3 , (89)
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then relation (88) implies
ŷA = λδA

1 . (90)

Now, we make the field redefinition
hA

µν = MAC ĥC
µν , (91)

with MAC the elements of M . This transformation of the spin-two fields leaves
∑n

A=1 L(PF)
0

(
hA

µν , ∂λhA
µν

)
invariant and, moreover, based on the above results, we obtain

n∑

A,B=1

[
yA
3 yB

3

(
∂[µhA µ

ρ]

)
∂[νh

B ν
λ] σρλ

]
= λ2

(
∂[µĥ1 µ

ρ]

)
∂[ν ĥ

1 ν
λ] σρλ, (92)

n∑

A=1

(
yA
3 εµνρFµν∂[θh

A θ
ρ]

)
= λεµνρFµν∂[θĥ

1 θ
ρ] , (93)

such that (??) becomes

ŜL(II.1)[ĥA
µν , V

µ] =
∫

d3x

[
n∑

A=1

(
L(PF)

0

(
ĥA

µν , ∂λĥA
µν

)
− 2kΛ̂AĥA

)
− 1

4
F̂ ′

µνF̂
′µν

]
, (94)

where
Λ̂A = ΛBMBA, F̂ ′µν = Fµν + 2kλεµνρ∂[θĥ

1 θ
ρ] . (95)

We observe that action (94) decouples into action (47) for the first spin-two field (A = 1) and a sum of
Pauli-Fierz actions with cosmological terms for the remaining (n− 1) spin-two fields. In conclusion,
we cannot couple different spin-two fields even outside the framework of General Relativity.

Subcase II.2 Here, we have three subsubcases. The first subsubcase is given by the conditions

(pA)A=1,n = 0, (fĀ)Ā=1,m = 0,
(
y3A′δ

D
3

)
A′=m+1,n

= 0, (96)

(y2A)A=1,n = 0, D 6= 3. (97)

In this context, we obtain the deformed Lagrangian action

ŜL(II.2) =
m∑

Ā=1

{∫
dDx

[
L(PF)

0

(
hĀ

µν , ∂λhĀ
µν

)
− 2kΛĀhĀ

]}

+
n∑

A′=m+1

ŜL(E−H)
[
gA′
µν

]
− 1

4
FµνF

µν

+kq2δ
D
5

∫
dDxεµνλαβVµFνλFαβ (98)

so, there are no couplings among different gravitons.
The second subsubcase is described by the relations

(pA)A=1,n = 0, (fĀ)Ā=1,m = 0,
(
y3A′δ

D
3

)
A′=m+1,n

= 0, (99)

(y2A)A=1,n = 0, q1 = 0, D = 3. (100)

In this situation we re-obtain the case from the previous section, described by formula (84), where we
have shown that there are no cross-couplings between different gravitons.

The third subsubcase corresponds to the formulas

(pA)A=1,n = 0, (fĀ)Ā=1,m = 0, (y3A)A=1,n = 0, (101)
(y2A)A=1,n = 0, D = 3. (102)

In this subsubcase, again no cross-couplings are permitted due to the fact that the resulting Lagrangian
is like in (98) up to replacing the density kq2δ

D
5 εµνλαβVµFνλFαβ with the standard Abelian Chern-

Simons term kq1ε
µνλVµFνλ.
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5 Generalization to an arbitrary p-form

The results obtained so far in the presence of a massless vector field can be generalized to the case of
deformations for one or several gravitons and an arbitrary p-form gauge field.

In the case of a single graviton the starting point is the sum between the Pauli-Fierz action and
the Lagrangian action of an Abelian p-form with p > 1

SL
0 [hµν , Vµ1...µp ] =

∫
dDx

(
L(PF)

0 − 1
2 · (p + 1)!

Fµ1...µp+1F
µ1...µp+1

)
, (103)

in D ≥ p+1 spacetime dimensions, with Fµ1...µp+1 the Abelian field strength of the p-form gauge field
Vµ1...µp

Fµ1...µp+1 = ∂[µ1
Vµ2...µp+1]. (104)

This action is known to be invariant under the gauge transformations

δεhµν = ∂(µεν), δεVµ1...µp = ∂[µ1
ε(p)
µ2...µp]

. (105)

Unlike the Maxwell field (p = 1), the gauge transformations of the p-form for p > 1 are off-shell
reducible of order (p− 1). This property has strong implications at the level of the BRST complex
and of the BRST cohomology in the form sector: a whole tower of ghosts of ghosts and of antifields will
be required in order to incorporate the reducibility, only the ghost of maximum pure ghost number,
p, will enter H (γ), and the local characteristic cohomology will be richer in the sense that (30) and
(32) become

HJ (δ|d) = 0 = H inv
J (δ|d) , J > p + 1. (106)

In spite of these new cohomological ingredients, which complicate the analysis of deformations, the
previous results can still be generalized.

Thus, two complementary cases are revealed. One describes the standard graviton-p-form in-
teractions from General Relativity and leads to a Lagrangian action similar to (43) up to replac-
ing (1/4) gµνgρλF̄µρF̄νλ with the expression (2 · (p + 1)!)−1 gµ1ν1 · · · gµp+1νp+1F̄µ1...µp+1F̄ν1...νp+1 and,
if p is odd, also the terms containing δD

3 εµ1µ2µ3 and δD
5 εµ1µ2µ3µ4µ5 with some densities involving

δD
2p+1ε

µ1...µ2p+1 and δD
3p+2ε

µ1...µ3p+2 respectively (if p is even, the terms proportional with either q1 or
q2 must be suppressed). The other case emphasizes that it is possible to construct some new defor-
mations in D = p + 2, describing a spin two-field coupled to a p-form and having (103) and (105)
as a free limit, which are consistent to all orders in the coupling constant and are not subject to the
rules of General Relativity. Their source is a generalization of the terms proportional with y3 from
the first-order deformation (34)

S
(int)
1 (y3) = y3εµ1...µpνρ

∫
dp+2x

(
V ∗µ1...µp∂[νηρ] +

1
p!

F λµ1...µp∂[νh
ρ]

λ

)
. (107)

Performing the necessary computations, we find the Lagrangian action

SL[hµν , Vµ1...µp ] =
∫

dp+2x
(
L(PF)

0 − 2kΛh

− 1
2 · (p + 1)!

F ′
µ1...µp+1

F ′µ1...µp+1

)
, (108)

where the field strength of the p-form is deformed as

F ′
µ1...µp+1

= Fµ1...µp+1 + 2 (−)p+1 ky3εµ1...µp+1ρ∂
[θh

ρ]
θ. (109)

This action is fully invariant under the original Pauli-Fierz gauge transformations and

δ̄εVµ1...µp = ∂[µ1
ε(p)
µ2...µp]

+ ky3εµ1...µpνρ∂
[νερ]. (110)

The gauge algebra remains Abelian and the reducibility of (110) is not affected by these couplings:
the associated functions and relations are the initial ones.

Regarding a collection of spin-two fields and a p-form, we find that there are no cross-couplings
among different spin-two fields intermediated by a p-form gauge field: the p-form couples to a single
spin-two field.
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6 Conclusion

Under the hypotheses of space-time locality, smoothness in the coupling constant, (background)
Lorentz covariance, Poincaré invariance, and preservation of the number of derivatives on each field
(plus positivity of the metric in the internal space in the case of a collection of spin-two fields), we
proved that there are no indirect consistent cross-interactions among different gravitons in the presence
of a massless p-form.
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