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Abstract

The paper points out the importance of the concept of symmetry in two (apparently) different
domains: QFT and Nonlinear dynamics. Two fundamental types of symmetries will be considered:
the point-like and the gauge symmetries. The BRST symmetry and its extensions will be imple-
mented as starting point for some nonlinear mechanical models. We will investigate the influences
that the ghost fields from the BRST Hamiltonian formalism could have on the dynamics of the
gauge fields when the ghosts are seen as real fields. The evolutionary equations for the ghosts
are written down and these equations are coupled with those corresponding to the real fields. The
Yang-Mills field is considered as an example and some features for a 2D nonlinear dynamical model
arising from this approach are compared with the similar results obtained for the free Yang-Mills
mechanical model.
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1 Introduction

Our lecture will concentrate on a very important concept of Physics: the symmetry. We will look for
the meaning of this concept in two apparently different chapter of Theoretical Physics: the Quantum
Field Theory and the Nonlinear Dynamics. More precisely we will investigate and we will try to
connect the BRST symmetry, a global symmetry which embed all the local symmetries of a gauge
field theory, and the Lie type symmetries, important for describing the evolution of some nonlinear
dynamical systems with a finite number of degree of freedom (mechanical systems).

The BRST symmetry [1] offers an appropriate frame in which a covariant description of the gauge
theories becomes possible. Many interesting models such as the Yang-Mills theories, have been suc-
cessfully investigated by using this approach. Its starting point is given by the original action of
the considered model, action which in the BRST approach has to be extended with ghost type fields
in order to generate correct equations of motion. Usually, the equations for the real fields only are
taken into account. Ghosts are considered as having no physical significance, in the sense that they
disappear in the asymptotic states.

One of the ideas of this paper is to present what is happening when both the real and the ghost
variables are seen as real generators of the dynamics, and the whole system of equations of motion is
taken into consideration. The sp(3) Hamiltonian description of the Yang-Mills theory is presented as
a concrete example. After writing down all the equations of motion, both for real fields and for ghosts,
the introduction of some specific expressions of all these fields in terms of color factors, generates
interesting examples of nonlinear mechanical models [3]. Many reasons determined us to choose the
sp(3) BRST approach. It had be noticed that, in the most general context, the BRST symmetry can
be represented as a sum of anticommuting differential operators [4]:

s = s1 + s2 + ...sn; sasb + sbsa = 0 (1)

The standard symmetry is given by s1 only. The sp(2) formalism generates the first two pieces, s1

and s2, of the generalized sp(n) representation. The sp(3) is the next step ahead and it offers many
possibilities for the gauge fixing procedure. On the other part, because in the sp(3) case the whole
spectrum of the variables is larger, an interesting nonlinear mechanical model is generated when the
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Two main results are reported here: (i) the equations of evolution for the ghosts allow to eliminate
all the ghost type variables , the terms from gauge fixed action which contain these variables are
automatically eliminated; (ii) eliminated, slight traces of regularity have been pointed out by the
emergence of periodical orbits.

The paper is structured as follows: after the preliminary considerations, the second section make
up a brief introduction to the two types of symmetries we are dealing with: the Lie symmetries on
one hand and the extended sp(3) BRST symmetry on the other. In the third section, we apply these
general results to the case of the Yang-Mills theory, seen as a field theory. The next section of the
paper makes the transition to the extended mechanical Yang-Mills model, providing the whole set of
equations that has to be considered in order to obtain a coherent description. These equations are
then studied for a particular 4-dimensional case and concrete results concerning the dynamics of the
system are presented. Some concluding remarks will end the paper.

2 From the Lie to the BRST symmetries

2.1 Lie symmetries of the mechanical models

A point-like transformation in the (−→x , t) space-time may be defined through an infinitesimal parameter
ε by:

t′ − t + δt, δt− εϕ(x, t) (2)
x′i(t) = xi(t) + δxi, δxi = εξi(x, t); i = 1, ..., n

The variation of an arbitrary analytical function u(x, t), δu = u(x′, t′)− u(x, t):

δu =
∂u

∂t
δt +

n∑

i=1

∂u

∂xi
δxi = εUu(x, t) (3)

The operator U denotes the generator of the infinitesimal point-like transformation and is called
Lie operator. Its concrete form is:

U = ϕ
∂

∂t
+

p∑

i=1

ξi(x, u)
∂

∂xi
+

q∑

α=1

φα(x, t)
∂

∂uα
(4)

The extension of the n-th order [5]:

U (n) = U +
q∑

α=1

∑

J

φJ
α(x, u(n))

∂

∂uα
J

(5)

where:

uα
J =

∂Juα

∂xj1∂xj2 ...∂xjm
, J = j1 + j2 + ...jm (6)

Let us consider a nonlinear dynamical system described by a n-th order partial derivative system
of equations:

∆ν(x, u(n)[x]) = 0 ; x = {xi, i = 1, ..., p}; u = {uα, α = 1, ...q} (7)

The operator (4) leaves invariant this system iff [6]:

U (n)[∆ν ] = 0 (8)

An interesting extension of the concept of Lie symmetry is those of the nonclassical symmetries
of the system [7]. The basic idea of the non-classical method is to add to (8) the requirement of
invariance surface condition. It has the form:

Qα(x, u(1)) = φα(x, u)−
p∑

i=1

ξi(x, u)
∂uα

∂xi
, α− 1, ..., q (9)
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The set Q ≡ {Q1, Q2, ...Qq} is known as the characteristic of the symmetry operator and acts as
a system of constraints. The number of determining equations is smaller. Consequently, the set of
solutions is larger than the one for the classical method.

The study of the point-like (Lie) symmetries of a dynamical systems is very important especially
for the cases when do not exist concrete solutions of the equations of motion. The symmetries allows
to obtain invariant quantities and, eventually, conservation laws.

2.2 The standard BRST symmetry

The standard BRST symmetry designates a global symmetry which, as Becchi, Rouet, Stora and later
Tyutin showed, can be attached to any physical system and can embed any other local symmetry the
system could have. Denominations like ”standard” symmetry have the role of distinguishing between
the symmetry as it was pointed out at the beginning and later extensions. In the next section, we
shall discuss one of these extensions, namely the sp(3) symmetry. It will be in fact the working frame
of our approach.

The special importance of the BRST symmetry is connected with the possibility of achieving
a coherent quantum description of the singular systems (gauge theories or constrained dynamical
systems). The idea issued from papers of Fadeev and Popov [8] who have used for the first time
”non-physical” quantities in the Lagrangian description of the Yang-Mills fields. Their approach was
further developed by t’Hooft [9], Feynman [10] and de Witt [11]. These quantities were called ghost
fields and they do not appear in the asymptotic states of quantum field theories. This is way their
dynamics is not usually taken into account. As already mentioned, we shall consider their dynamics,
too.

The starting point of the BRST theory is the action S0 which describe the singular system. It has
to be replaced by an extended action, S = S0 + ..., which will contain the local symmetries of S0 but
will spoil it from its non-physical degrees of freedom and will generate well-defined path integrals and
Green functions. Moreover, S will be invariant with respect to the action of a differential operator,
s, called BFV -BRST operator or BFV -BRST symmetry. Any other observable F of the system will
meet the same invariance condition:

sS = 0; sF = 0 (10)

The price we have to pay is given by the extension of the space in which the new action is
defined. The extended space is generated by the initial physical coordinates but also by new ghost
type generators. As in this paper we shall mainly use a Hamiltonian approach, we shall refer to the
extended space as extended phase space.

An important requirement for s is its nilpotency:

s2 = 0 (11)

This requirement express the feature of differential operator for s. A very useful representation of s,
ensuring a symplectic structure for the extended space and of implementing the symmetry s by means
of a canonical transformation:

s∗ ≡ [∗, Ω]

In the previous equation Ω is called the BFV -BRST charge and the bracket is a generalized Poisson
bracket written in terms of the whole set of canonical variables (real and ghost types). The nilpotency
of s combined with the Jacobi identity leads to the master equation, the main equation which allows
to effectively obtain Ω:

[Ω,Ω] = 0 (12)

Together with Ω, another important observable in the Hamiltonian approach is the Hamiltonian
itself. As the action, it has to be ”extended” in order to become a BRST invariant function:

H0 → H = H0 + ...; sH ≡ [H, S] = 0
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The extended Hamiltonian H and the extended action S still contain non-physical degrees of freedom
coming from the gauge symmetry H0 and S0. They have to be killed by imposing adequate gauge
fixing conditions. As a conclusion, the implementation of the BRST symmetry imposes the following
algorithm: (i) the construction of an adequate extended phase space where the ghost type variables are
added to the real ones; (ii) the construction of the BFV -BRST charges and the extended Hamiltonian;
(iii) the gauge fixing procedure.

2.3 The sp(3) BRST Hamiltonian theory

We shall consider a gauge theory which at Hamiltonian level is represented by a constrained dynam-
ical system described by the set of irreducible constraints {Gα(qi, pi), α = 1, · · · ,m, i = 1, · · · , n}
and by the canonical Hamiltonian H0(qi, pi). The Grassmann parities of the constraints and of the
Hamiltonian are ε(Gα) = εα, ε(H0) = 0. The gauge algebra have the form

[Gα, Gβ] = fγ
αβGγ , [H0, Gα] = V β

α Gβ (13)

where the structure functions fγ
αβ and V β

α can depend in general on the qi and pi.
For this theory we shall develop the sp(3) BRST Hamiltonian approach [?]. Hence, we shall pass

from the original gauge symmetry to a global symmetry, sp(3) BRST symmetry

sT = s1 + s2 + s3, (14)

sa = δa + da + · · · , a = 1, 2, 3 (15)

sasb + sbsa = 0, a, b = 1, 2, 3. (16)

The main steps which need to be followed are: (i) the construction of the extended phase space adequate
for implementation of the sp(3) BRST symmetry (14)-(16); (ii) the construction of the BFV -BRST
charges and the extended Hamiltonian; (iii) the gauge fixing procedure.

The extended phase space will be generate by the introduction, for each constraint Gα, α =
1, · · · ,m, of the three pairs of canonical conjugate ghost variables {Pαa, Q

αa, a = 1, 2, 3} with
ε(Pαa) = ε(Qαa) = εα + 1 and

δaPαb = δabGα (17)

daQ
αb = εadcδ

dbλαc +
1
2
fα

βγQβQγ . (18)

In order to secure the crucial property of the Koszul differentials, δa, a = 1, 2, 3 namely the acyclicity of
the positive resolution numbers, it is necessary to introduce the new generators, παa with ε(παa) = εa

and their conjugatesλαa with ε(λαa) = ε(παa) = εa so that

δaπαb = εabcPαc (19)

daλ
αb = δb

aη
α +

1
2
fα

βγλβbQγcδca +
1
12

fθ
σαfγ

θβεbcdQ
αcQβdQσeδea. (20)

The same property, the acyclicity of δa, imposes the introduction of new generators, πα, and their
conjugate ηα with ε(πα) = ε(ηα) = εa + 1 and

δaπα = δabπαb (21)

daη
α =

1
2
fα

βγηβQγbδba +
1
12

(fθ
σγfα

θβ + fθ
σβfα

θγ)λγcQσbδbaQ
βc. (22)

We will denote the whole set of generators of the extended phase space by

QA = {qi, Qαa, λαa, ηα, a = 1, 2, 3} (23)

PA = {pi, Pαa, παa, πα, a = 1, 2, 3}. (24)
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For two arbitrary functionals F and G defined by the extended phase space, the generalized Poisson
brackets with respect to which the conjugation is defined are

[F, G] =
δF

δQA

δG

δPA
− (−)εF εG

δG

δQA

δF

δPA
. (25)

The graduation rules of all generators and operators of our theory assume the introduction of the
following degree: (i) ghost number (gh) which is positive for ghosts, gh(QA) > 0, negative for ghost
momenta, gh(PA) < 0, and zero for real fields, gh(qi) = 0 = gh(pi); (ii) resolution degree (res) which
is positive for ghost momenta, res(PA) = −gh(PA), and zero for ghosts, res(QA) = 0 and real fields,
res(qi) = 0 = res(pi); (iii) level number (lev) which is positive for ghosts, lev(QA) ≥ 0, negative for
ghost momenta, lev(PA) ≤ 0 and zero for real fields, lev(qi) = lev(pi) = 0. For the operators we
define the following graduation: gh(δa) = 1, lev(δa) = a− 1, gh(da) = 1, lev(da) = a− 1, gh(sa) = 1,
lev(sa) = a− 1.

The main quantities of the theory are the three BRST charges and the extended Hamiltonian. The
BRST charges represent the canonical transcription of the BRST symmetries:

sa ∗ = [∗, Ωa], a = 1, 2, 3. (26)

The relation (16) imposes the fulfilling of the following equations:

[Ωa,Ωb] = 0; a, b = 1, 2, 3. (27)

These equations must be completed by adequate boundary conditions:

δΩa

δQαb

∣∣∣∣
PA=0

= δabGα,
δΩa

δλαb

∣∣∣∣
QA=P ′A=0

= εabcPαc,
δΩa

δηα

∣∣∣∣
QA=P ′A=0

= δabπα (28)

where P ′
A denotes all the ghost momenta excepting the one appearing in the right hand side of the

same relation. For the extended Hamiltonian the problem is

[H, Ωa] = 0 ; a = 1, 2, 3. (29)

H|P=π=Q=λ=0 = H0. (30)

The solutions to the problems (27), (28) and (29), (30) depend on the type of the theory we deal
with. As we will study the Yang-Mills fields, which are bosonic fields and which define a first rank
irreducible theory where the structure functions fγ

αβ and V α
β are constants, the BFV-BRST charges

have the form [4]:

Ωa = GαQαbδba + εabcPαcλ
αb +

1
2
fα

βγPαcQ
γcQβa + παaη

α +
1
2
fα

βγπαcλ
γcQβa+

+
1
12

fθ
σαfγ

θβεbcdπαbQ
αcQβdQσeδea +

1
2
fα

βγπαηγQβa+

+
1
12

(fθ
σαfγ

θβ + fθ
σβfγ

θα)πγλαcQσbδbaQ
βc

The extended Hamiltonian [4] will be

H = H0 + V α
β (PαaQ

βa + παaλ
βa + πaη

β). (31)

In order to avoid the presence of any non-physical degrees of freedom in the theory, we have to
apply the gauge fixing procedure. Unfortunately, new problems could be generated by the fact that
it is difficult to choose a particular form of the gauge fixing term so that the covariance of the theory
will not affected. We shall propose a general term to overcome such problems and to contain as ghosts
the π-momenta of zero order only, the last momenta ensuring the acyclicity of the Koszul differentials.
More concretely, the following theorem [?] is valid:

145



Theorem: For any BRST invariant function K a non-constant odd function Y , defined on the
extended phase space sp(3) and with gh(Y ) = −3 exists so that

K =
1
3!

εabc[Ωa, [Ωb, [Ωc, Y ]]]. (32)

For the phase space generated by (23) and (24) the gauge fixing function Y has the form (in the De
Witt notations):

Y = fα(q, p)πα. (33)

3 The Yang-Mills field theory

In this section, we shall discuss the Yang-Mills theory in the sp(3) BRST Hamiltonian approach. We
will shall from the action which describes the non-abelian Yang-Mills fields in four dimensions

S0[Am
µ ] = −1

4

∫
d4x Fm

µνF
µν
m (34)

where
Fm

µν = ∂µAm
ν − ∂νA

m
µ + gεm

nrA
n
µAr

ν . (35)

The canonical analysis of the model leads to the irreducible first class constraints

G(1)
m (x) ≡ p0

m(x) ≈ 0 (36)

G(2)
m (x) ≡ −∂ip

i
m(x) + gεmnrA

r
i (x)pin(x) ≈ 0 (37)

and to the first class Hamiltonian

H0 =
∫

d3x (
1
4
Fm

ij F ij
m − 1

2
pimpim + Am

0 (−∂ipim + gεr
mn Ainpir)). (38)

The gauge algebra is given by:

[G(1)
m , G(1)

n ] = 0, [G(1)
m , G(2)

n ] = 0, [G(2)
m , G(2)

n ] = gεr
mnG(2)

r ,

[H0, G
(1)
m ] = G(2)

m , [H0, G
(2)
m ] = −gεr

mnA0nG(2)
r . (39)

We shall denote the whole set of constraints as {G(∆)
m , ∆ = 1, 2;m = 1, · · · , d}.

The generators of the extended phase space have the form

PA ≡ {pim, P (∆)
ma , π

(∆)
mab, π

(∆)
ma , π(∆)

m }, QA ≡ {Aim, Q(∆)ma, λ(∆)mab, λ(∆)ma, η(∆)m} (40)

The nontrivial generalized Poisson brackets are

[pim(x), Ajn(y)]x0=y0 = −δj
i δ(x− y), (41)

[P (∆)
ma (x), Q(∆′)nb(y)]x0=y0 = −δn

mδb
aδ

∆∆′δ(x− y), (42)

[π(∆)
ma (x), λ(∆′)nb(y)]x0=y0 = −δn

mδb
aδ

∆∆′δ(x− y), (43)

[π(∆)
m (x), η(∆′)n(y)]x0=y0 = −δn

mδ∆∆′δ(x− y). (44)

As it is easily to verify, the BFV-BRST charges, solutions of the equation (27), have the following
expressions:

Ωa =
∫

d3x ( p0mQ(1)mbδba + (−∂ipim + gεr
mnAinpir)Q(2)mbδba+

+εabcP
(∆)
mc λ(∆)mb + π(∆)

ma η(∆)m +
1
2
gεm

nr(P
(2)
mc Q(2)rc + π(2)

mcλ
(2)rc + π(2)

m η(2)r)Q(2)nbδba+
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+
1
12

g2εe
rnεm

eqεdbcπ
(2)
mbQ

(2)rcQ(2)qdQ(2)nbδba + (45)

+
1
12

g2(εe
nrε

m
eq + εe

nqε
m
er)π

(2)
m Q(2)nbδbaQ

(2)qcλ(2)rc), a = 1, 2, 3

The extended Hamiltonian will be of the form:

H = H0 +
∫

d3x ((Q(1)ma + gA0nεm
nrQ

(2)ra)P (2)
ma + (λ(1)ma + gA0nεm

nrλ
(2)ra)π(2)

ma+

+(η(1)m + gA0nεm
nrη

(2)r)π(2)
m +

g

2
εm
nr(εabcQ

(2)nbQ(1)rcπ(2)
ma + (Q(1)naλ(2)ra−

−Q(2)naλ(1)ra)π(2)
m ) +

g2

6
εe
qrε

m
enεabcQ

(2)naQ(2)rbQ(1)qcπ(2)
m ). (46)

For the gauge fixing procedure we shall choose the following form of the fermion function [?]

Y =
∫

d3x (∂iAm
i )π(1)

m (47)

which leads to the gauge fixed action

SY =
∫

d4x(−1
4
Fm

µνF
µν
m + p0m(∂µAm

µ ) + (∂µP (1)
ma)(Dµ)m

n Q(2)na−

−(∂µπ(1)
ma)(D

µ)m
n λ(2)na + (∂µπ(1)

m )(Dµ)m
n η(2)n+

+
g

2
εm
nr(εabc(∂µπ(1)

ma)Q
(2)nc(Dµ)r

eQ
(2)eb) + (∂µπ(1)

m )((Dµ)n
e λ(2)ea)Q(2)ra−

−λ(2)na(Dµ)r
eQ

(2)ea)) +
g2

6
εm
neε

e
rqεabc(∂µπ(1)

m )Q(2)qaQ(2)nb(Dµ)r
gQ

(2)gc) (48)

4 Towards a generalized mechanical model

Let us consider now the Euler-Lagrange equations generated by the gauge fixed action (48) for the
fields An

µ, Qna, λna, ηn and their conjugate momentum. They will have the form:

∂µFµν
m + gεmnrA

n
µFµνr = 0 (49)

∂µ(Dµ)m
n Qna = 0 (50)

∂µ(Dµ)m
n λna +

g

2
εabcε

m
nr(∂µQnc)(Dµ)r

eQ
eb = 0 (51)

∂µ(Dµ)m
n ηn − g2

12
εabcε

m
neε

e
rqQ

nb(∂µQqa)(Dµ)r
eQ

ec+

+
g2

2
εm
erε

e
nqA

µq(λna(∂µQra) + (∂µλna)Qra) = 0 (52)

(Dµ)n
m∂µPna − gεabcεmnr(∂µπnb)(Dµ)r

eQ
ec +

g

2
εabcεmre(Dµ)n

e ∂µπnaQ
rc+

+gεn
mr(∂µπn)(Dµ)r

eλ
ebδba +

g

2
εe
mn(Dµ)r

e∂µπrλ
nbδba+

+
g2

2
εabcε

n
reε

e
mw(∂µπn)(Dµ)w

q QqbQrc +
g2

6
εabcε

w
reε

e
mq(D

µ)m
w ∂µπmQqbQrc = 0 (53)

(Dµ)n
m∂µπna − gεmnr(∂µπn)(Dµ)r

eQ
ea = 0 (54)

(Dµ)n
m∂µπn = 0. (55)

A first remark is that, on the basis of these equations, a large part of the terms corresponding to
the ghost variables (containing ghosts) can be eliminated from the gauge fixed action. We shall not
insist on this remark at this particular stage as it does not fall within the scope of this paper.
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We are interested now in another topic, namely in transforming the Yang-Mills field in a ”me-
chanical” model, a system with a finite number of degrees of freedom, where the fields are replaced
as unknown variables by a set of color factors. For the gauge field , Aα

m, described by the equation
(49), this approach has been done long ago [3]. It was expressed in terms of the color factors f (m) by
introducing some orthogonal matrices Oi

m. More precisely, the following hypotheses were considered:

A0
m = 0, ∂jAi

m = 0, Ai
m(t) =

1
g
Oi

mf (m)(t), Oi
mOi

n = δmn (56)

Using (56) in (49) one obtains the system of ”mechanical” equations:

..
f

(m)
+ f (m)(f2 − f (m)2) = 0. (57)

This system has been intensively studied as a non-linear dynamical system and special periodic orbits,
invariance or integrability cases have been pointed out [13].

What we propose now is the use of the same technique for the extended action S, i.e. for the
whole system (49)-(55). In principle, by solving the equation (50) we obtain the solutions Qma(r, t)
which, introduced in (51), lead to the solutions for λma(r, t). Using the solutions for Qma(r, t) and
λma(r, t) in the equation (52), we can obtain the solutions for ηm (r, t). Therefore, it is necessary to
solve the equations (50). In this respect, we shall introduce a new set of color factors, h(m), and we
shall choose, by similarity with (56), the following form for the fields Qma(r, t):

Qma(r, t) = h(m)(t)uma(r) (58)

It is important to note that it is not possible to express the ghost fields Qma(r, t) using the same
color factors {f (m),m = 1, ..., d} as for the real fields Ai

m. In order that (58) represents a well-defined
decomposition, we will choose the fields uma(r) as a basis, so that

∂ju
ma(r) = εmnqOn

j uqa(r) (59)

The previous relation allows us to write:

∂jQ
ma(r, t) = εmnqh(m)(t)On

j uqa(r). (60)

Using (56), (58) and (60) in (50) we have:

..
h

(m)
(t)− 2h(m)(t) + f (n)h(q) = 0, m 6= n 6= q, m, n, q = 1, · · · , d. (61)

Similarly, from (56) and (55) via
πm(r, t) = h(m)(t)wm(r, t) (62)

∂jwm(r) = εmnqOn
j wq(r) (63)

we shall obtain the same equation (64). With the solutions of the form (62) in the equations (54) and
(53) we can obtain the solutions of these equations, respectively πma(r, t) and Pma(r, t) respectively.

Conclusion: The mechanical Yang-Mills model corresponding to the extended action S can be
written in the form of a system of 2d equations with 2d unknown quantities {f (m), h(m),m = 1, ..., d}:





..
f

(m)
(t) + f (m)(t)(f2(t)− f (m)2(t)) +

∑
n,q

m6=n 6=q

h(n)(t)h(q)(t) = 0

..
h

(m)
(t)− 2h(m)(t) +

∑
n,q

m6=n 6=q

f (n)(t)h(q)(t) = 0
. (64)

In the particular case m = 3, the equations (64) generate a system of 6 differential equations with
6 unknown quantities {f (i), h(i), i = 1, 2, 3}:
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..
f

(1)
(t) + f (1)(t)(f (2)2(t) + f (3)2(t)) + h(2)(t)h(3)(t) = 0 (65)

..
f

(2)
(t) + f (2)(t)(f (1)2(t) + f (3)2(t)) + h(1)(t)h(3)(t) = 0 (66)

..
f

(3)
(t) + f (3)(t)(f (1)2(t) + f (2)2(t)) + h(1)(t)h(2)(t) = 0 (67)

..
h

(1)
(t)− 2h(1)(t) + f (2)(t)h(3)(t) + f (3)(t)h(2)(t) = 0 (68)

..
h

(2)
(t)− 2h(2)(t) + f (3)(t)h(1)(t) + f (1)(t)h(3)(t) = 0 (69)

..
h

(3)
(t)− 2h(3)(t) + f (1)(t)h(2)(t) + f (2)(t)h(1)(t) = 0 (70)

By introduction of the notations:

f (1) ≡ x, f (2) ≡ y, f (3) ≡ z, h(1) ≡ u, h(2) ≡ v, h(3) ≡ w (71)

these equations will take the form:




..
x + x(y2 + z2) + vw = 0
..
y + y(x2 + z2) + uw = 0
..
z + z(x2 + y2) + uv = 0

..
u− 2u + vz + wy = 0
..
v − 2v + wx + uz = 0
..
w − 2w + uy + vx = 0

(72)

It is difficult to find out a general solution of this system or to extract interesting information
on the system in this form. Instead, in order to see what analogy and influences can be established
between the dynamics of the gauge fields and that of the ghost fields, we shall restrict ourselves to the
study of a particular 4-dimensional case. Let us consider the case: f (1) ≡ x, f (2) = f (3) = y, h(1) ≡
u, h(2) = h(3) ≡ v. This case means in fact that two supplementary constraints have to be considered:

G1 ≡ y − z = 0; G2 ≡ v − w = 0 (73)

By using the Dirac technique concerning the implementation of the constraints, with adequate La-
grange multipliers, the system (72) transforms in the following 2D differential system:

..
x + 2xy2 + v2 = 0

..
y + yx2 + y3 + uv = 0 (74)

..
u− 2u + 2vy = 0

..
v − 2v + vx + uy = 0

Two types of evolutions could be studied for this type of mechanical system: (i) the evolution of each
variable in time, (ii) the Lie symmetries of the system. Such studies performed for the free Mechanical
Yang-Mills model provided some interesting periodical trajectories and proved the existence of an
interesting class of point-like symmetries [14]. What is really important to note in our cases, (72) and
(74), is that the equations for the real fields are coupled with the equations for the ghosts. The last
ones seem to influence the dynamics of the former ones.
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5 Conclusions

The paper focused on the time evolution of the variables which are currently used in the description
of the Yang-Mills model, starting from the gauge fixed action. We showed how the Hamiltonian
formalism, applied to the case when a sp(3) BRST symmetry is implemented, can be developed. The
main idea was to take into consideration not only the real non-abelian gauge fields but the ghosts
fields too, i.e. to write the evolution equations for the whole set of fields which generated the extended
phase space. After the study of the system in the frame of the Quantum Field Theory, we changed
the context and transformed the system in a mechanical one. The fields were expressed in terms of
two sets of color factors {f (i), h(i), i = 1, ..., D}and, consequently, the field equations became a system
of 2D second order differential equations. The concrete form of these equations for D = 3, D = 2
was effectively written down. The main conclusions arising in the two different contexts in which
the Yang-Mills theory was considered are the following: (i) as a gauge field theory in the BRST
approach, the Yang-Mills model shows that part of the ghosts disappear in the asymptotic states
because of their equations of motion. It is not possible to eliminate all the ghost fields, a vertex
type interaction between the gauge fields and the ghosts is still present; (ii) as a nonlinear dynamical
system, the extended mechanical Yang-Mills model mixes the evolutionary equations for the real non-
abelian fields with those corresponding to the ghost type variables, that is the ghosts influence the
dynamics of the real fields.
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