PhysicsAUC, vol. 18, 136-140(2008) PHYSICS AUC

Lifting and descending procedures for Lagrangians of higher order

Paul Popescu and Marcela Popescu
University of Craiova,
Department of Applied Mathematics
13, AlLL.Cuza st., Craiova, 200585, Romania
E-mail: marcelacpopescu@yahoo.com

Abstract

The aim of the paper is to give a more simple form of the tangent space of order k£ > 1 of
a manifold. We prove that this is diffeomorphic with the tangent of k'-velocities and with the
cotangent bundles of k'—co-velocities. The diffeomorphism ic constructed using a totally reducible
Lagrangian or a totally co-reducible Lagrangian of order k that can come, for example, from a
hyperregular Lagrangian of first order on M.

Let M be a smooth manifold (all the objects considered in the paper are supposed to be of class
C™). For every k € IN one can associate with M the differentiable manifolds T* M, T** M, TliM and
(Tkl)*, in a functorial manner.

First, T* M is the tangent space of order k, T°M = M, T*M = TM (see [3, 5]). Then T*M can
be considered as a locally trivial bundle T*M 5 TiM for every j = 0,k — 1. The dual counterpart
of T¥M, as considered in [6, 10], is T**M = T*='M x 3y T*M, the cotangent space of order r, where
x pr denotes the fibered products of bundles over the base M. A Lagrangian of order k on M is
L :TFM — IR; its dual counterpart, proposed in [10], is the affine Hamiltonian h : TEMT — TF M,

a section of the affine one-dimensional affine bundle T*M*t 2 T pp , where TFTM — TF=1M[ is the

affine dual of the affine bundle T#M ™5' T*=1)1, Hyperregular Lagrangians and affine Hamiltonians
are naturally related by Legendre transformations.
The manifold 7, klM is the Whitney sum TklM =TM & ---&TM; since it can be identified with

~
k times

the manifold J} (IR*, M) of the k'-velocities of M, it is called the tangent bundle of k'-velocities of M
(see [4, 8]). The dual bundle (Tkl)* M =T*M & ---®T*M is the vector bundle of k'-covelocities of

k times

M (see also [4, 8]).

Two classes of high order Lagrangians of order k are considered: a co-reducible Lagrangian of order
k that gives rise to a diffeomorphism of T*M and Tkl*M and a reducible Lagrangian of order k that
gives rise to a diffeomorphism of T*M and T, klM . A co-reducible Lagrangian induces a Hamiltonian
H on Tk}*M and a reducible Lagrangian induces a Lagrangian L on TklM . If H is hyperregular one
say that L is co-hyperreducible and if L is hyperregular one say that L is hyperreducible.

The lift of a hyperregular Lagrangian of first order to a Lagrangian of order k, constructed in
Proposition 4), is co-hyperreducible and hyperreducible as well.

We use local coordinates from [5], but in spite of their local forms, the main objects are global
ones.

A semispray of order k is a section S : TFM — T*TIM of the affine bundle 7y, : TFTIM — TFM.
Since TF*'M c TT*M (in fact 7y, is an affine subbundle of the tangent bundle of T*M), then S can
be regarded as well as a vector field on T*M.

Let us denote by TF~MIM = TF"1M x5 TM; more general, if 0 < r < k, then T7* "M =
T™M xp T, M, where T°M = M = T} M.

Proposition 1 If S : TF'M — TFM is a semispray of order k, then there is a diffeomorphism
®: TEM — TFLIM: more general, if 0 < r < k and S® : T M — T*M, o = 7+ 1,k are
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semisprays (of order «), then there is a diffeomorphism o) . TEM — THE="M . In particular, if
S@) el r TN, o = 2,k are semisprays, then there is a diffeomorphism ®*) . TFM — TklM.

We say that a diffeomorphism ® : TFM — TklM is a semi-spray type diffeomorphism if it has the
form & = ®*) as in Proposition above.

There is a semispray of order k& > 1 canonically associated with a k-order Lagrangian L (see, for
example, [5, 1]), given by a section S : T kM — T*+H1)M, which in local coordinates has the form

(:Bi, y(l)j, e y(k)j) 5, (o, y(l)j, .. ,k‘y(k)j, —(k+ 1)Si(mi, y(l)j, .. ,y(k)j)), where
L k) oL oL
% ey _
(k+1)S" = 59 (dT <8y(k>j 910 and

, , .0
dg@ =4 I + y(z)zm + y(kﬂ)zw is the Tulczyjew operator, that has only a local

action (it is not a global vector field).

Proposition 2 Let L : TM — IR be a hyperregular Lagrangian (of first order). Then there is a
semi-spray type diffeomorphism ® : TFM — TklM canonically associated with L.

Notice that in particular the Lagrangian L may be a Finslerian if it is 2-homogeneous, or L may
come from a Riemannian metric if it is quadratic in velocities.

If £1,..., e are real numbers, ¢; # 0, ¢ > 1, one can consider also a k-lagrangian L") . TkM — R
having the local form L") (z?, (i 420 9By = o) L(z? y(D) 4 eo L(x?, 20 4. 4 g, L(27, 27,
it is a Lagrangian in the multisymplectic sense (see [3, 5]), using the coordinates z°, y(l)i, 221 z(k)i)
on TFM. In general one can prove the following result.

Proposition 3 Let {Lo}, 1%, La : TM — IR be hyperregular Lagrangians of first order k € IN*,
a = 1,k. Then there is a semi-spray type diffeomorphism ® : TFM — TklM canonically associated
with {Lq}.

The diffeomorphism ® can be constructed using Proposition 1, constructing inductively the La-
grangians {L(O‘)}a:ﬁ by formula L@ (g7, y(i @i y@iy = L (2%, yMH4 Lo(a?, 227 4 ...
+Lo(zt, (%), where succesively z(®)? are constructed as in Proposition 2, using formula (??). O

According to [10], an affine hamiltonian of order k on M is a differentiable map h : TF*M — TkMT,
such that IToh = 1T/k:_]\/4’ where IT : TEMT — Th* M. Thus h has the local form h(z?, y(V?, ... yF=Di p)

(mi,y(l)i,...,y(kfl)i,pi,—Ho(xi,y(l)i,...,y(kfl)i,pi)). The local functions Hy change according to

, , , ) ) ) 1 (k- y ¢
the rules H)(z" Ly Dy BT ) = Ho(2f, gL gD p) + %ngk b (g1 )a—:v,pl It is

oz

OH, 92" 0Hy 1 ’

easy to see that 8p-0 = aa;i 8110 + %F(Uk 1)(y(k*l)l ). Thus there is a map H : THM — TkM,
i %

(k—1)i 9Hy

oD

given in local coordinates by H(:ci,y(l)i,...,y , Di) = (xi,y(l)i,...,y ,

(k—1)i (@f, yVi, ...

y=1i, pi)), called the Legendre* mapping of the affine hamiltonian h. We say also that h is reg-
wlar if ‘H is a local diffeomorphism and h is hiperregular if H is a global diffeomorphism. Since

02 Hy Oz" 927" 0% H, . 0°H
0o _ 9% 9T 0 , it follows that h%” = % isa symmetric 2-contravariant d-tensor,
OpirOpjr Oz 0x7 Op;Op; OpiOp;
which is non-degenerate iff h is regular. There is a real function H : T**M — IR defined by the

0Hy

(k_l)i,pi) =Dp; B — Hy. We call H the pseudo-energy of h.

formula H (z*,yM", ...,y

Let L : T*M — IR be a hyperregular k-Lagrangian. The Legendre transformation £ : TFM —
Tk M is a diffeomorphism and there is an affine Lagrangian h defined by L, using £, as follows. Let
(zf, y My By (@t Wiy B0 F gty (=1 0)) be the local form of
the inverse of £. Then the local functions Hy on T%*M, defined by the formula
HO(xi)y(l)iv"‘7y(k_1)i7pi) = pJH] -
L(xz7 y(l)’L? A 7y(k:_1)z7 Hl)?
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where H' = H'(z*, i y(k_l)i,pi), define locally an affine hamiltonian of order k on M. Consider

(k) _ OHo

Hy’ = —

0 6pj

which is a real function on T**M. Let us denote £ = L) and define Ly : T M — THED* M x

) aﬁ[(k)
(k—2)i 0

pj — Ho, (1)

T*M using the formula L(k_l)(a:i, y Wiy = (2, (D y " gyt pi). Let

us denote p; = p(x); and Ho = H(()k) and let us suppose that £,_) is a diffemorphism and let 5(_1:—1)
‘ ‘ . Loy . o ‘

having the local form (z*, 5y, ..., y(k’Q)’,p(k_l)i, P(k)i) e (zf, y Wi,y (gt (Wi

y(k72)i7 p(k—l)b p(k:)z)7 p(k)l) Let
H(gk:—l)(w1'7 y@i y(ka)’i’p(kil)i’p(k)i) = p(kfl)jHi _
A @,y VB2 ),

where H' = Hl(mzv y(l)ia SRR y(k_2)i7p(k:—1)i7p(k)i)
We consider in that follow a procedure that descends the degree of some higher order Hamiltonians,
constructed using a given high order Lagrangian.

(k—1)

(. H _

Consider Hék 2 = gop(kl)j—Ho(k 1), which is a real function on T*=D* M x 3, 7* M. Induc-
P(k—1)j

tively, let us suppose that the diffeomorphisms Ly,. .., L£_q) has been constructed for 1 < ¢ < k—1.
We have L,_q) : TF7IM xpp (T*M)? — T*R=D*M xpp (T*M)? = TR0V x5 (T*M)*, where
(T*M)? = T*M @ --- & T*M (q times) is a diffemorphism, given by a formula L,_g (2", gy

. o eH )
y(k_q)la p(k7q+l)i7 s 7p(k)z) = (*Tza y(l)lu SRR y(k_q_l)za ayTﬂ(Di(ml, y(l)za s 7y(k_q)17p(k7q+l)i7 s 7p(k)z)7
, , . Loy
Plh—qt1)is - - > P(kyi)- Let E@{q) having the local form (z*, y i y(k’qfl)l,p(k_q)i, s D(k)i) 251
(2, yWi, L, yRmam i Hi(gt, Wiy ke Dkyi)s D(k—gi1)is - - > D(yi)-  Let

k—q=1)( i i —q—2)i j (e i —q—1)i
H(g / 1)(1' 7y(1) 7"'>y(k =2) yPlk—q—1)is - - - >p(k)z) = P(k—q-1)j H](.CE 7y(1) 7. 7y(k =1

ﬂ(()k*(1+1)($i’ y(l)i7 o ’y(k—q—l)i’ H,
P(k—q+1)i> "-ap(k)i)' ( )
k—q—1
(g H o
If k—qg—1>1, we consider Hék =1 _ g’op(kql)j — H(()k 1 1), which is a real function
P(k—q-1)j
on T*=a=UM > (T* M) we define Ly 1y @ TF797IM xpp (T*M)™H — TH=a=D AL x )
(T*M)TT = T*=a=2)\f 53 (T*M)?2 using the formula L—q—1) (2, y Wiy kma=Di Pll—q)ir- >
ag(gk_q_l) i, (1)i k—q—1)i
W(xl> y( )Zv s y( - )17 Pl—qyis- -+ 7p(k:)z)7 Plk—g+1)is- -+
P(kyi)- We suppose that L,_,_1) is a diffeomorphism.
If k—q—1=1, we skip ffél) and we consider L1y : TM x (T*M)™Y = T*M xp (T*M)*! =
, o o\
(T*M)" using the formula £ (2%, yM7, prayi, . ., poayi) = (@, W?)i(xl’ YV poyis - D)) PR)is - -
p(k)i). We suppose also that L) is a diffeomorphism and its inverse has the local form £(1)(p(1)i, e
P(kyi) = (Hi(p(l)l-, c s P(k)i)s P(2)is - - - s P(k)i)- Let us define the multi-Hamiltonian HO . (T*M)k — IR
using the formula H© (p(1);, ..., pwyi) = pyiH (Pyis - - -+ Pryi)— Hél)(Hi7P(2)¢7 e D))
If we suppose that all the applications L), . .., £1 are diffeomorphisms, we say that the Lagrangian
L of order k is co-reducible Let us denote by W = L1y 00 L.

payi) = (2, y i, L, ylhmam i

Theorem 1 If the Lagrangian L of order k > 1 is co-reducible, then there is a diffeomorphism IjkM A
TM* Xpr--- Xy TM*= Tk}*M with the canonical k-cotangent structure on M such that L = HOow,

~
k times
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We prove below that always there is a completely regular Lagrangian of any order £ > 1, con-
structed by lifting an arbitrary hyperregular Lagrangian of first order to order k.

Proposition 4 Let L : TM — IR be a hyperreqular Lagrangian and L : TEM — IR be the
Lagrangian constructed above, given by L") (x? yMi 40y = L(z? yWH4 L(z?, 2 4 ... 4
L(x*, z(k)i). Then L% is a co-reducible Lagrangian of order k.

Let us denote by VT*M — T¥M the vertical vector bundle of the bundle TM % M. A non-
linear connection in the bundle 7 is defined by a vector subbundle HT*M < TT*M that gives a
Whitney sum TTKM = VT*M @ HT*M. Tt follows a splitting VI*M = VFIM @ ... @ VEEM,
where VFM = J*(HT*M), a = 1,k and J is the k-tangent structure on T*M (it has the local
8y(?a)i J, E)y(f“)i’ a =0,k —1, where 8y?0)i = 831 and 8;"3)" J, 0). See [5] for more details
concerning these constructions.

The vector bundles V*M are all isomorphic with HT* M and also with the induced vector bundle
;"M . There are canonical isomorphisms of the vector bundle VM with the vector bundles VM,
a=1,k—1and with HT*M.

Using local coordinates, the isomorphisms of VF*M with VM, a = 1,k — 1 and with HT*M

form

0 0 0 . ) 0 0 j
have the local form Dy — 5@ and By 7 — 527 respectively, where ry(o)i T o ]\1[1
4 j_0 6o _ 0 i 9 j 0 .
Oy(l)j _ .‘..— ]\Izl Dy’ Gyl = ay(a)j_ ]\171 W — ]f\_fia EGTR The local functions

N/...., N/ depend on (z, y i y(k)i).
1 k
The embedding T+ M "4 Tk M has the local form (zf, y Vi, ...,y T y(l)iaai—i- R
T
.0 ) 4
(ktl)i = _ ()i 2 4 .. ~(k+1)i
(k+1)y FRGE gttt (k+1)y 550 where
g = g,
2y(2i = 95(2)i_ N; Wi,
1
y®)i = k)i — N! gh=1i ... Ni i
1 k-1
(k+ 1)y ®+Di = (k4 1)g+Di— N g5 — ... NT 0d,
1 k

It is easy to see that the applications (2, y i y(k)i) A (2, g g](k)i) and (z°, y i

el A (%, g1 ..., g*+D7) gives some differentiable maps A : T*M — TYM and A’ : TF+1M —
Tk1 11 M. They depend only on the non-linear connection in the bundle 7y : TFM — M.

Proposition 5 A non-linear connection in the bundle m, : T*M — M defines in a canonical way

some differentiable maps A : T*M — TklM and N : TFH1M — TleM.

We say that a non-linear connection in the bundle 7, : T*M — M is reqular (hyperregular) if the
map A is a local diffeomorphism (global diffeomorphism). It is easy to see that in this case A’ is also
a diffeomorphism.

Examples of hyperregular non-linear connections can be constructed as follows. Let us say that
a non-linear connection of order k > 2 is totally projectable if the horizontal bundle HT*M =

HW®TEN < TTEM projects, according to the succeeding differentials of the canonical projections

10, _
Ty MR-ty AT B plag b6 horizontal distributions H@OTYM © TT®M that give non-

linear connections of order @ = 1,k — 1. The local coefficients {N. ;a)i}a:ﬁ of the given non-linear
connection have the property in this case that N](a)i = N;a)i(azl, y Wty o = 1)k, and

N@Y _-— are the coefficients of the suitable non-linear connection of order «. Taking into account
J =1,
the local form of the map A, it is easy to see that the following statement is true.
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Proposition 6 A totally projectable non-linear connection of order k > 2 is a hyperreqular one.

Let ¢ be a Riemannian metric on the manifold 7M. Then the vector subbundle HT*M =
(VT*M)+ C TT*M defines a non-linear connection in the bundle ;. We can consider a new Rie-
mannian metric § on the manifold T¥M obtained from the restriction of g to V¥®M then asking that
the vector bundles VM, o = 1,k and HT*M be orthogonal each to the other
according to the metric g.

Using local coordinates, let us denote by gg.l) (2, gDy = ¢ <8, 8) the lo-
8y(0‘)1 8y(0¢)3 "

cal components of the metric ¢ when it is resticted to the vector bundle V¥®M. Then 9i; =

- 0 o . 5 5
9<W»W),a—0,kag<waw> =0,a#0€{0,...,k}.

Using Proposition 5 in the case of the non-linear connection constructed using the Riemannian
metric g or §, one obtain a diffeomorphism A of T+ M and Tk1 41 M. Using this diffeomorphism, one
obtain a Riemannian metric on T, kl 1M that makes A an isometry.
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