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Abstract

The aim of the paper is to give a more simple form of the tangent space of order k ≥ 1 of
a manifold. We prove that this is diffeomorphic with the tangent of k1–velocities and with the
cotangent bundles of k1–co-velocities. The diffeomorphism ic constructed using a totally reducible
Lagrangian or a totally co-reducible Lagrangian of order k that can come, for example, from a
hyperregular Lagrangian of first order on M .

Let M be a smooth manifold (all the objects considered in the paper are supposed to be of class
C∞). For every k ∈ IN one can associate with M the differentiable manifolds T kM , T k∗M , T 1

k M and(
T 1

k

)∗, in a functorial manner.
First, T kM is the tangent space of order k, T 0M = M , T 1M = TM (see [3, 5]). Then T kM can

be considered as a locally trivial bundle T kM
πj→ T jM for every j = 0, k − 1. The dual counterpart

of T kM , as considered in [6, 10], is T k∗M = T k−1M ×M T ∗M , the cotangent space of order r, where
×M denotes the fibered products of bundles over the base M . A Lagrangian of order k on M is
L : T kM → IR; its dual counterpart, proposed in [10], is the affine Hamiltonian h : T kM † → T k∗M ,
a section of the affine one-dimensional affine bundle T kM † Π→ T k∗M , where T k†M → T k−1M is the
affine dual of the affine bundle T kM

πk−1→ T k−1M . Hyperregular Lagrangians and affine Hamiltonians
are naturally related by Legendre transformations.

The manifold T 1
k M is the Whitney sum T 1

k M =TM ⊕ · · · ⊕ TM︸ ︷︷ ︸
k times

; since it can be identified with

the manifold J1
0 (IRk,M) of the k1-velocities of M , it is called the tangent bundle of k1-velocities of M

(see [4, 8]). The dual bundle
(
T 1

k

)∗
M =T ∗M ⊕ · · · ⊕ T ∗M︸ ︷︷ ︸

k times

is the vector bundle of k1-covelocities of

M (see also [4, 8]).
Two classes of high order Lagrangians of order k are considered: a co-reducible Lagrangian of order

k that gives rise to a diffeomorphism of T kM and T 1∗
k M and a reducible Lagrangian of order k that

gives rise to a diffeomorphism of T kM and T 1
k M . A co-reducible Lagrangian induces a Hamiltonian

H̃ on T 1∗
k M and a reducible Lagrangian induces a Lagrangian L̃ on T 1

k M . If H̃ is hyperregular one
say that L is co-hyperreducible and if L̃ is hyperregular one say that L is hyperreducible.

The lift of a hyperregular Lagrangian of first order to a Lagrangian of order k, constructed in
Proposition 4), is co-hyperreducible and hyperreducible as well.

We use local coordinates from [5], but in spite of their local forms, the main objects are global
ones.

A semispray of order k is a section S : T kM → T k+1M of the affine bundle πk : T k+1M → T kM .
Since T k+1M ⊂ TT kM (in fact πk is an affine subbundle of the tangent bundle of T kM), then S can
be regarded as well as a vector field on T kM .

Let us denote by T k−1,1M = T k−1M ×M TM ; more general, if 0 ≤ r ≤ k, then T r,k−rM =
T rM ×M T 1

k−rM , where T 0M = M = T 1
0 M .

Proposition 1 If S : T k−1M → T kM is a semispray of order k, then there is a diffeomorphism
Φ : T kM → T k−1,1M ; more general, if 0 ≤ r ≤ k and S(α) : Tα−1M → TαM , α = r + 1, k are
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semisprays (of order α), then there is a diffeomorphism Φ(r) : T kM → T r,k−rM . In particular, if
S(α) : Tα−1M → TαM , α = 2, k are semisprays, then there is a diffeomorphism Φ(k) : T kM → T 1

k M .

We say that a diffeomorphism Φ : T kM → T 1
k M is a semi-spray type diffeomorphism if it has the

form Φ = Φ(k) as in Proposition above.
There is a semispray of order k ≥ 1 canonically associated with a k-order Lagrangian L (see, for

example, [5, 1]), given by a section S : T kM → T k+1M , which in local coordinates has the form
(xi, y(1)j , . . . , y(k)j) S→ (xi, y(1)j , . . . , ky(k)j ,−(k + 1)Si(xi, y(1)j , . . . , y(k)j)), where

(k + 1)Si =
1
2
gij

(
d

(k)
T

(
∂L

∂y(k)j

)
− ∂L

∂y(k−1)j

)
and

d
(k)
T = y(1)i ∂

∂xi
+ y(2)i ∂

∂y(1)i
+ · · ·+ y(k+1)i ∂

∂y(k)i
is the Tulczyjew operator, that has only a local

action (it is not a global vector field).

Proposition 2 Let L : TM → IR be a hyperregular Lagrangian (of first order). Then there is a
semi-spray type diffeomorphism Φ : T kM → T 1

k M canonically associated with L.

Notice that in particular the Lagrangian L may be a Finslerian if it is 2–homogeneous, or L may
come from a Riemannian metric if it is quadratic in velocities.

If ε1, . . . , εk are real numbers, εi 6= 0, i ≥ 1, one can consider also a k-lagrangian L(k) : T kM → IR
having the local form L(k)(xi, y(1)i, y(2)i, . . . , y(k)i) = ε1L(xi, y(1)i)+ ε2L(xi, z(2)i)+ · · ·+ εkL(xi, z(k)i);
it is a Lagrangian in the multisymplectic sense (see [3, 5]), using the coordinates xi, y(1)i, z(2)i, . . . z(k)i)
on T kM . In general one can prove the following result.

Proposition 3 Let {Lα}α=1,k, Lα : TM → IR be hyperregular Lagrangians of first order k ∈ IN∗,
α = 1, k. Then there is a semi-spray type diffeomorphism Φ : T kM → T 1

k M canonically associated
with {Lα}.

The diffeomorphism Φ can be constructed using Proposition 1, constructing inductively the La-
grangians {L(α)}α=1,k by formula L(α)(xi, y(1)i, y(2)i, . . . , y(α)i) = L1(xi, y(1)i)+ L2(xi, z(2)i) + · · ·
+Lα(xi, z(α)i), where succesively z(α)i are constructed as in Proposition 2, using formula (??). 2

According to [10], an affine hamiltonian of order k on M is a differentiable map h : T̃ k∗M → T̃ kM †,

such that Π◦h = 1
T̃ k∗M

, where Π : T̃ kM † → T̃ k∗M . Thus h has the local form h(xi, y(1)i, . . . , y(k−1)i, pi) =

(xi, y(1)i, . . . , y(k−1)i, pi,−H0(xi, y(1)i, . . . , y(k−1)i, pi)). The local functions H0 change according to

the rules H ′
0(x

i′ , y(1)i′ , . . . , y(k−1)i′ , pi′) = H0(xi, y(1)i, . . . , y(k−1)i, pi) +
1
k
Γ(k−1)

U (y(k−1)i′)
∂xi

∂xi′ pi. It is

easy to see that
∂H ′

0

∂pi′
=

∂xi′

∂xi

∂H0

∂pi
+

1
k
Γ(k−1)

U (y(k−1)i′). Thus there is a map H : T k∗M → T kM ,

given in local coordinates by H(xi, y(1)i, . . . , y(k−1)i, pi) = (xi, y(1)i, . . . , y(k−1)i,
∂H0

∂pi
(xi, y(1)i, . . . ,

y(k−1)i, pi)), called the Legendre∗ mapping of the affine hamiltonian h. We say also that h is reg-
ular if H is a local diffeomorphism and h is hiperregular if H is a global diffeomorphism. Since
∂2H ′

0

∂pi′∂pj′
=

∂xi′

∂xi

∂xj′

∂xj

∂2H0

∂pi∂pj
, it follows that hij =

∂2H0

∂pi∂pj
is a symmetric 2-contravariant d-tensor,

which is non-degenerate iff h is regular. There is a real function H : T k∗M → IR defined by the

formula H(xi, y(1)i, . . . , y(k−1)i, pi) = pi
∂H0

∂pi
−H0. We call H the pseudo-energy of h.

Let L : T kM → IR be a hyperregular k-Lagrangian. The Legendre transformation L : T kM →
T k∗M is a diffeomorphism and there is an affine Lagrangian h defined by L, using L, as follows. Let
(xi, y(1)i, . . . , y(k−1)i, pi) → (xi, y(1)i, . . . , y(k−1)i, H i(xi, y(1)i, . . . , y(k−1)i, pi)) be the local form of
the inverse of L. Then the local functions H0 on T k∗M , defined by the formula

H0(xi, y(1)i, . . . , y(k−1)i, pi) = pjH
j −

L(xi, y(1)i, . . . , y(k−1)i,H i),
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where H i = H i(xi, y(1)i, . . . , y(k−1)i, pi), define locally an affine hamiltonian of order k on M . Consider

H̃
(k)
0 =

∂H0

∂pj
pj −H0, (1)

which is a real function on T k∗M . Let us denote L = L(k) and define L(k−1) : T k∗M → T (k−1)∗M ×M

T ∗M using the formula L(k−1)(xi, y(1)i, . . . , y(k−1)i, pi) = (xi, y(1)i, . . . , y(k−2)i,
∂H̃

(k)
0

∂y(k−1)i
, pi). Let

us denote pi = p(k)i and H0 = H
(k)
0 and let us suppose that L(k−1) is a diffemorphism and let L−1

(k−1)

having the local form (xi, y(1)i, . . . , y(k−2)i, p(k−1)i, p(k)i)
L−1

(k−1)→ (xi, y(1)i, . . . , y(k−2)i, H i(xi, y(1)i, . . . ,

y(k−2)i, p(k−1)i, p(k)i), p(k)i). Let

H
(k−1)
0 (xi, y(1)i, . . . , y(k−2)i, p(k−1)i, p(k)i) = p(k−1)jH

i −
H̃

(k)
0 (xi, y(1)i, . . . , y(k−2)i,H i, p(k)i),

where H i = H i(xi, y(1)i, . . . , y(k−2)i, p(k−1)i, p(k)i)
We consider in that follow a procedure that descends the degree of some higher order Hamiltonians,

constructed using a given high order Lagrangian.

Consider H̃
(k−2)
0 =

∂H
(k−1)
0

∂p(k−1)j
p(k−1)j−H

(k−1)
0 , which is a real function on T (k−1)∗M×M T ∗M . Induc-

tively, let us suppose that the diffeomorphisms L(k),. . ., L(k−q) has been constructed for 1 < q < k−1.
We have L(k−q) : T k−qM ×M (T ∗M)q → T (k−q)∗M ×M (T ∗M)q = T (k−q−1)M ×M (T ∗M)q+1, where
(T ∗M)q = T ∗M ⊕ · · · ⊕ T ∗M (q times) is a diffemorphism, given by a formula L(k−q)(xi, y(1)i, . . . ,

y(k−q)i, p(k−q+1)i, . . . , p(k)i) = (xi, y(1)i, . . . , y(k−q−1)i,
∂H̃

(q)
0

∂y(k−q)i
(xi, y(1)i, . . . , y(k−q)i, p(k−q+1)i, . . . , p(k)i),

p(k−q+1)i, . . . , p(k)i). Let L−1
(k−q) having the local form (xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i)

L−1
(k−q)→

(xi, y(1)i, . . . , y(k−q−1)i, H i(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i), p(k−q+1)i, . . . , p(k)i). Let

H
(k−q−1)
0 (xi, y(1)i, . . . , y(k−q−2)i, p(k−q−1)i, . . . , p(k)i) = p(k−q−1)j Hj(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i)−

H̃
(k−q+1)
0 (xi, y(1)i, . . . , y(k−q−1)i, H i,

p(k−q+1)i, . . . , p(k)i).

If k − q − 1 > 1, we consider H̃
(k−q−1)
0 =

∂H
(k−q−1)
0

∂p(k−q−1)j
p(k−q−1)j −H

(k−q−1)
0 , which is a real function

on T (k−q−1)∗M ×M (T ∗M)q+1; we define L(k−q−1) : T k−q−1M ×M (T ∗M)q+1 → T (k−q−1)∗M ×M

(T ∗M)q+1 = T (k−q−2)M×M (T ∗M)q+2 using the formula L(k−q−1)(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . ,

p(k)i) = (xi, y(1)i, . . . , y(k−q−1)i,
∂H̃

(k−q−1)
0

∂y(k−q−1)i
(xi, y(1)i, . . . , y(k−q−1)i, p(k−q)i, . . . , p(k)i), p(k−q+1)i, . . . ,

p(k)i). We suppose that L(k−q−1) is a diffeomorphism.

If k− q− 1 = 1, we skip H̃
(1)
0 and we consider L(1) : TM ×M (T ∗M)k−1 → T ∗M ×M (T ∗M)k−1 =

(T ∗M)k using the formula L(1)(xi, y(1)i, p(2)i, . . . , p(k)i) = (xi,
∂H

(1)
0

∂y(1)i
(xi, y(1)i, p(2)i, . . . , p(k)i), p(2)i, . . . ,

p(k)i). We suppose also that L(1) is a diffeomorphism and its inverse has the local form L(1)(p(1)i, . . . ,

p(k)i) = (H i(p(1)i, . . . , p(k)i), p(2)i, . . . , p(k)i). Let us define the multi-Hamiltonian H̃(0) : (T ∗M)k → IR

using the formula H̃(0)(p(1)i, . . . , p(k)i) = p(1)iH
i(p(1)i, . . . , p(k)i)− H

(1)
0 (H i, p(2)i, . . . , p(k)i).

If we suppose that all the applications L(k), . . . ,L1 are diffeomorphisms, we say that the Lagrangian
L of order k is co-reducible Let us denote by Ψ = L(1) ◦ · · · ◦ L(k).

Theorem 1 If the Lagrangian L of order k ≥ 1 is co-reducible, then there is a diffeomorphism T kM
Ψ→

TM∗ ×M · · · ×M TM∗
︸ ︷︷ ︸

k times

= T 1∗
k M with the canonical k-cotangent structure on M such that L = H̃(0)◦Ψ.
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We prove below that always there is a completely regular Lagrangian of any order k ≥ 1, con-
structed by lifting an arbitrary hyperregular Lagrangian of first order to order k.

Proposition 4 Let L : TM → IR be a hyperregular Lagrangian and L(k) : T kM → IR be the
Lagrangian constructed above, given by L(k)(xi, y(1)i, . . . , y(k)i) = L(xi, y(1)i)+ L(xi, z(2)i) + · · ·+
L(xi, z(k)i). Then L(k) is a co-reducible Lagrangian of order k.

Let us denote by V T kM → T kM the vertical vector bundle of the bundle T kM
πk→ M . A non-

linear connection in the bundle πk is defined by a vector subbundle HT kM ⊂ TT kM that gives a
Whitney sum TT kM = V T kM ⊕ HT kM . It follows a splitting V T kM = V k,1M ⊕ · · · ⊕ V k,kM ,
where V k,αM = Jα(HT kM), α = 1, k and J is the k–tangent structure on T kM (it has the local

form
∂

∂y(α)i

J→ ∂

∂y(α+1)i
, α = 0, k − 1, where

∂

∂y(0)i
=

∂

∂xi
and

∂

∂y(k)i

J→ 0). See [5] for more details

concerning these constructions.
The vector bundles V k,αM are all isomorphic with HT kM and also with the induced vector bundle

π∗kTM . There are canonical isomorphisms of the vector bundle V k,kM with the vector bundles V k,αM ,
α = 1, k − 1 and with HT kM .

Using local coordinates, the isomorphisms of V k,kM with V k,αM , α = 1, k − 1 and with HT kM

have the local form
∂

∂y(k)j
→ δ

δy(α)j
and

∂

∂y(k)j
→ δ

δxj
respectively, where

δ

δy(0)i
=

δ

δxi
=

∂

∂xi
− N j

i
1

∂

∂y(1)j
− · · ·− N j

i
k

∂

∂y(k)j
,

δ

δy(α)j
=

∂

∂y(α)j
− N j

i
1

∂

∂y(α+1)j
− · · ·− N j

i
k−α

∂

∂y(k)j
. The local functions

N j
i

1

,. . ., N j
i

k

depend on (xi, y(1)i,. . ., y(k)i).

The embedding T k+1M
Ik+1→ TT kM has the local form (xi, y(1)i, . . . , y(k+1)i)

Ik+1→ y(1)i ∂

∂xi
+ · · ·+

(k + 1)y(k+1)i ∂

∂y(k)i
= ỹ(1)i δ

δxi
+ · · ·+ (k + 1)ỹ(k+1)i δ

δy(k)i
, where

y(1)i = ỹ(1)i,
2y(2)i = 2ỹ(2)i− N i

j
1

ỹ(1)j ,

· · ·
ky(k)i = kỹ(k)i− N i

j
1

ỹ(k−1)j − · · ·− N i
j

k−1

ỹ(1)j

(k + 1)y(k+1)i = (k + 1)ỹ(k+1)i− N i
j

1

ỹ(k)j − · · ·− N i
j

k

ỹ(1)j .

It is easy to see that the applications (xi, y(1)i, . . . , y(k)i) Λ→ (xi, ỹ(1)i, . . . , ỹ(k)i) and (xi, y(1)i, . . . ,

y(k+1)i) Λ′→ (xi, ỹ(1)i, . . . , ỹ(k+1)i) gives some differentiable maps Λ : T kM → T 1
k M and Λ′ : T k+1M →

T 1
k+1M . They depend only on the non-linear connection in the bundle πk : T kM → M .

Proposition 5 A non-linear connection in the bundle πk : T kM → M defines in a canonical way
some differentiable maps Λ : T kM → T 1

k M and Λ′ : T k+1M → T 1
k+1M .

We say that a non-linear connection in the bundle πk : T kM → M is regular (hyperregular) if the
map Λ is a local diffeomorphism (global diffeomorphism). It is easy to see that in this case Λ′ is also
a diffeomorphism.

Examples of hyperregular non-linear connections can be constructed as follows. Let us say that
a non-linear connection of order k ≥ 2 is totally projectable if the horizontal bundle HT kM =
H(k)T kM ⊂ TT kM projects, according to the succeeding differentials of the canonical projections

T kM
Πk→ T k−1M

Πk−1→ · · · Π2→ T 1M , to horizontal distributions H(α)TαM ⊂ TTαM that give non-
linear connections of order α = 1, k − 1. The local coefficients {N (α)i

j }α=1,k of the given non-linear

connection have the property in this case that N
(α)i
j = N

(α)i
j (xl, y(1)l, . . . , , y(α)l), α = 1, k, and

{N (β)i
j }β=1,α are the coefficients of the suitable non-linear connection of order α. Taking into account

the local form of the map Λ, it is easy to see that the following statement is true.
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Proposition 6 A totally projectable non-linear connection of order k ≥ 2 is a hyperregular one.

Let g be a Riemannian metric on the manifold T kM . Then the vector subbundle HT kM =
(V T kM)⊥ ⊂ TT kM defines a non-linear connection in the bundle πk. We can consider a new Rie-
mannian metric g̃ on the manifold T kM obtained from the restriction of g to V k,αM , then asking that
the vector bundles V k,αM , α = 1, k and HT kM be orthogonal each to the other
according to the metric g̃.

Using local coordinates, let us denote by g
(α)
ij (xi, y(1)i, . . . , y(k)i) = g

(
∂

∂y(α)i
,

∂

∂y(α)j

)
the lo-

cal components of the metric g when it is resticted to the vector bundle V k,αM . Then g
(α)
ij =

g̃

(
δ

δy(α)i
,

δ

δy(α)j

)
, α = 0, k, g̃

(
δ

δy(α)i
,

δ

δy(β)j

)
= 0, α 6= β ∈ {0, . . . , k}.

Using Proposition 5 in the case of the non-linear connection constructed using the Riemannian
metric g or g̃, one obtain a diffeomorphism Λ of T k+1M and T 1

k+1M . Using this diffeomorphism, one
obtain a Riemannian metric on T 1

k+1M that makes Λ an isometry.
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