MODELING DYNAMIC VISCOSITY OF Ar PLASMA IN A TWO-TEMPERATURE REGIME

N.A.Harabor¹, J.B.Rouffet², G.Zissis², M.Cristea¹ ¹Politehnica University Bucharest, Romania ²Universite Paul Sabatier, Toulouse III, Toulouse, France

<u>Abstract</u>: A model based on the Chapman-Enskog method was developed in order to determine two-temperature (2T) viscosity of argon atmospheric plasma versus the electron temperature for three different values of $\theta = T_e/T_h$. Calculations were made in the assumption that chemical equilibrium is established and that the kinetic electron temperature T_e is different from that of heavy species T_h . Our model is based on the hypothesis that the heavy species and electrons are coupled. The results are in good agreement with those found by other authors.